
CCCG 2009, Vancouver, BC, August 17–19, 2009

Computational Geometry of Contour Extraction∗

Pedro J. Tejada† Xiaojun Qi‡ Minghui Jiang§

Abstract

We present a method for extracting contours from dig-
ital images using techniques from computational geom-
etry. Our approach is different from traditional pixel-
based methods in image processing. Instead of working
directly with pixels, we extract a set of oriented feature
points from the input digital images, then apply classi-
cal geometric techniques such as clustering, linking, and
simplification to find contours among these points. Ex-
periments on synthetic and natural images show that
our method can effectively extract contours even from
images with considerable noise; moreover the extracted
contours have a very compact representation.

1 Introduction

Contours are the boundary lines of geometric shapes
within digital images; see Figure 1. Since the identifica-
tion of contours is crucial for analyzing the contents of
an image, contour extraction is one of the most impor-
tant problems in computer vision and pattern recogni-
tion [5, p. 1135]. This problem is especially difficult for
images with complex shapes and with noise.

(a) (b)

Figure 1: (a) A digital image of shapes. (b) Contours.

Traditional methods for finding contours can be clas-
sified by scope depending on whether they do local,
regional, or global processing [7, pp. 725–738]. Lo-
cal methods analyze a small neighborhood about ev-
ery pixel and link adjacent pixels if they satisfy some
criteria. Regional methods use different techniques to

∗Supported in part by NSF grant DBI-0743670 and an
ADVANCE grant from Utah State University.

†Department of Computer Science, Utah State University,
p.tejada@aggiemail.usu.edu. This work is part of Pedro J. Te-
jada’s Master’s thesis [20] supervised by Minghui Jiang.

‡Department of Computer Science, Utah State University,
xiaojun.qi@usu.edu

§Department of Computer Science, Utah State University,
mjiang@cc.usu.edu

connect pixels which are previously known to be part
of the same region or contour. In such cases, geomet-
ric algorithms, such as polygonal fitting can be used
to efficiently find approximations of contours; however,
the knowledge required is not always available, so they
are not generally applicable. Global methods, such
as the Hough transform, do not rely on any kind of
prior knowledge, and try to find sets of pixels which
lie on curves of specific shapes. These three methods
all present some drawbacks: local methods ignore valu-
able global information about the geometric proximity
of pixels, since they only look at a very small neighbor-
hood; regional methods require prior knowledge about
which pixels are part of which contour; and global meth-
ods such as the Hough transform can only be used to
find certain types of shapes. We present a method for
extracting contours from digital images using techniques
from computational geometry. Our method exploits
the global information about the geometric proximity of
pixels, requires no prior knowledge about the regional
membership of pixels, and is not restricted to any par-
ticular shapes.

contoursimage oriented points

pre−processing geometric algorithms

(a)

oriented points contours

clustering simplificationlinking

geometric algorithms

(b)

Figure 2: Overview of our method. (a) Two stages.
(b) Geometric algorithms for the second stage.

Our method consists of two stages: a pre-processing
stage that extracts a set of oriented points from the in-
put image, and a second stage that finds the contours
among the oriented points using geometric algorithms.
The second stage is the most important and has three
steps: (1) points are first filtered by a clustering tech-
nique; (2) then points are linked, based on proximity
and orientation, into paths representing the contours;
(3) and finally paths are simplified by reducing the num-
ber of points they have. See Figure 2.

21st Canadian Conference on Computational Geometry, 2009

2 Input Conversion

At the pre-processing stage, a Sobel edge detector [7]
is used to determine possible contour pixels, which are
then transformed into oriented points. The edge detec-
tor outputs a set of edge pixels where the intensity of
the image changes abruptly. Each edge pixel has a mag-

nitude indicating how good or strong is the edge at the
pixel location, and a direction indicated by an angle.
Then each pixel is transformed into an oriented point
pi located at the center (xi, yi) of the pixel, with its ori-
entation αi given by the edge direction, and a weight wi

initialized with the edge magnitude.

3 Point Clustering

Clustering techniques are very useful for image process-
ing and pattern recognition. For example, clustering
methods are among the most powerful approaches for
image segmentation [22]. We use a clustering based
algorithm to reduce the number of points in order to
reduce the processing time of the following steps and
improve the results of the linking step, which might find
multiple lines where there should be a single contour, if
points are close together.

Algorithm. We reduce the number of points using
a simple iterative greedy algorithm that repeatedly
merges the closest pair of points into a new point until
the distance between the closest pair reaches a threshold
dmax, which is chosen to be a constant times the mini-
mum distance dmin between two points in the input.

When a pair of points is merged into one, the values
for the new point are weighted averages of the values of
the original points. This ensures that the distribution
and orientations of the new point set approximate those
of the original set. Merging points pi and pj into a new
point pk is done as follows:

xk =
xiwi + xjwj

wi + wj

, yk =
yiwi + yjwj

wi + wj

,

αk =
α′

iwi + α′
jwj

wi + wj

, wk = wi + wj ,

where α′
i ∈ {αi, αi+π} and α′

j ∈ {αj, αj +π} are chosen
so that the orientation of pk is close to the orientations
of both pi and pj .

Implementation. The total number of steps of our al-
gorithm is at most n−1 because at each step the number
of points is reduced by one. Therefore, the algorithm
can easily be implemented to run in O(n2 log n) time
by finding the closest pair in O(n log n) time [1, 13] at
every step, or in O(log n) time by using a data structure
that can maintain the closest pair in O(log n) time per
insertion and deletion [2].

4 Point Linking

Finding contours from image regions or edge pixels can
be done by simple contour tracing algorithms such as
Moore’s algorithm [16], which traces the boundaries by
starting from a known contour pixel and repeatedly
moving to adjacent contour pixels until a stopping con-
dition is met. Another possibility is to use edge linking
algorithms, which link edge pixels if they are within a
small neighborhood and have similar magnitude or di-
rection [18, 19, 17, 23]. Similar to these algorithms,
our algorithm also links points based on proximity and
orientation.

Algorithm. Our algorithm is in spirit similar to Prim’s
algorithm for minimum spanning tree [6]. To generate
a path, it starts from a single segment then greedily
extends the path in both directions until maximal.

dmax

π
2

pipi−1

pi−2

pa

pb

pc
pd

pe

Figure 3: Extending the path P = (. . . , pi−2, pi−1, pi)
at the end point pi. Only points in the gray area can be
linked. The maximum distance allowed to link points is
dmax.

The initial segment of the new path is determined
by a pair of isolated points (pi, pj) within the threshold
distance dmax, such that the weight w(pi, pj) (to be de-
fined) is maximum. Then the path is extended at both
ends by repeatedly adding points until there are no more
candidates or the added point was already part of some
path. When extending a path P = (. . . , pi−2, pi−1, pi)
from the end point pi, the algorithm takes the point px

with the best weight and satisfying the following con-
ditions: (i) the distance from px to pi is at most dmax,
and (ii) the turn angle from pi−1pi to pipx is at most
π/2. We refer to Figure 3 where the point with the best
weight would be selected from among pa, pb, and pc,
since pd and pe do not satisfy the given conditions.

Weight function. The weight w(pi, pj) of a pair of
points (pi, pj) is determined by the distance between
them |pipj| and the difference between their orientations
and the orientation of the segment pipj . Therefore, it
depends on two parameters dmax and αmax. We use a

CCCG 2009, Vancouver, BC, August 17–19, 2009

function that decreases when the distance or the differ-
ences between the orientations increase, and that has a
minimum value of 0 when they are greater than or equal
to dmax or αmax.

Implementation. For our choice of dmax = c · dmin for
a small constant c, the number of points within distance
dmax of a point pi is a constant, and the total number of
pairs that may be linked is O(n). By using some range
searching technique all these pairs can be found in linear
time and sorted in O(n log n) time. Then, finding the
initial pair for a path and the best point to extend it
can be done in constant time. Therefore, the algorithm
can be implemented to run in O(n log n).

5 Path Simplification

The paths obtained by the linking step are often more
complex than necessary and thus it is desirable to sim-
plify them by reducing the number of points they have.
By doing that it is possible to reduce the space re-
quired to store them, reduce small inconsistencies due
to noise, and improve the efficiency of any further pro-
cessing based on them.

Since paths are represented by polylines, the problem
of simplifying paths is the same as the geometric prob-
lem of polygonal chain approximation or simplification,
defined as follows [5]: Given a polygonal chain P =
(p1, p2, . . . , pn), find another chain Q = (q1, q2, . . . , qm)
such that (1) m < n (ideally m ≪ n); (2) the qj are
selected from among the pi, with q1 = p1 and qm = pn;
and (3) any segment qjqj+1 that replaces the sub-chain
qj = pr . . . ps = qj+1 is such that the distance ε(r, s) be-
tween qjqj+1 and each pk, r ≤ k ≤ s, is less than some
predetermined error tolerance ε according to some error
criterion.

Algorithm. Several algorithms have been proposed for
approximating polygonal chains [21, 12, 15, 8, 3, 9], with
most optimal algorithms taking Ω(n2) time to find ap-
proximations in R

2. We propose a dynamic program-
ming algorithm to simplify polygonal chains, based on
the segment criterion [5]: for each pk, r ≤ k ≤ s, the
minimum distance from pk to qjqj+1 is less than ε.

The detour [4] of a chain P on the pair of points
(pi, pj) is defined as the total length |pi . . . pj | of the sub-
chain pi . . . pj divided by the length of the segment pipj:

d(i, j) =
|pi . . . pj|

|pipj |
.

The algorithm uses the following property of the de-
tour to determine if a segment of the approximation has
an error within the desired tolerance: Given a segment
pipj and an error tolerance ε for the segment criterion,

there is a bound

dT (i, j) =

√

4ε2 + |pipj |2

|pipj |

on the detour d(i, j) such that, if d(i, j) ≤ dT (i, j), then
ε(i, j) ≤ ε.

We now describe the dynamic programming algo-
rithm. Denote by K(i) the minimum number of points
of the best known approximation of the sub-chain
p1 . . . pi. The algorithm is as follows:

Base case: For all i, K(i) = i.

Recurrence: For all i and j such that 1 ≤ j < i and
d(j, i) ≤ dT (j, i), K(i) = min{K(i), K(j) + 1}.

Implementation. The dynamic programming algo-
rithm clearly runs in O(n2) time, where n is the number
of vertices in the original chain, since the detour of any
segment pipj can be computed in constant time after
pre-computing the lengths of the sub-chains p1 . . . pi in
linear time. Then recovering the best approximation is
done in linear time using backtracking.

6 Experiments

To evaluate our method we have done tests with a va-
riety of synthetic and natural images. See Figure 4 for
two example results.

(a)

(c)

(b)

(d)

Figure 4: (a) Binary image apple-11.jpg. (b) Binary
image contours: 61 points and 4 paths. (c) Natural
image peppers.jpg. (d) Natural image contours: 2182
points and 214 paths.

Evaluating accuracy. To test the accuracy of our
method, we use two data sets. The first data set is a
set of random pictures, each containing a few randomly
generated shapes (such as line segments and ellipses)

21st Canadian Conference on Computational Geometry, 2009

among 10,000 noise points. The second data set in-
cludes the binary images from the MPEG7 CE Shape–1
Part B database1 [14] with noise injected: 5% of the pix-
els of each image (randomly selected with replacement)
are set to random values.

We use the Hausdorff distance, with images rescaled
to fit inside a unit square, as the performance measure to
evaluate our results. It is widely used in pattern recog-
nition [10, 11], but it is not commonly used to evaluate
contour extraction performance because it is quite sen-
sitive to noise. Nevertheless, it is good for our purposes
since it can be applied to continuous lines instead of
discrete pixels for which one can count pixels detected
correctly (true positives) or incorrectly (false positives).

For the set of random shapes, the average Hausdorff
distance is 0.0182 ± 0.0326, and the average number of
paths is 12.68. For the set of binary images, the average
Hausdorff distance is 0.0339 ± 0.0508, and the average
number of paths is 9.57.

Evaluating compression. To evaluate the amount of
compression obtained by our method we use some
commonly used test images from the USC-SIPI Image
Database2 and some images created by ourselves. For
each image we compare the number of points extracted
by the edge detector with the number of points after
the clustering and simplification steps. On average the
number of points is reduced to 9.20 ± 2.76 percent.

7 Conclusion

Our experimental results show that our method can ef-
fectively extract contours from digital images with a
moderate amount of noise. The small Hausdorff dis-
tance measures indicate that most of the contours are
detected correctly, while the small number of paths de-
tected is an indication that the connectivity is good.
Compression results also show that the resulting con-
tours are much more compact than the ones that can
be obtained by using a pixel-based representation.

References

[1] J.L. Bentley and M.I. Shamos. Divide-and-conquer in mul-
tidimensional space. In Proceedings of the 8th Annual ACM

Symposium on Theory of Computing, pages 220–230, 1976.

[2] S.N. Bespamyatnikh. An optimal algorithm for closest pair
maintenance. In Proceedings of the 11th Annual Symposium

on Computational Geometry, pages 152–161, 1995.

[3] W.S. Chan and F. Chin. Approximation of polygonal curves
with minimum numbers of line segments or minimum error.

1www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm.
This is a collection of 1400 black-and-white images of simple to
moderately complex shapes commonly used for the evaluation
of shape descriptors and object recognition and classification
algorithms.

2sipi.usc.edu/database/index.html.

International Journal of Computational Geometry and Ap-

plications, 6:59–77, 1996.

[4] A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas.
A fast algorithm for approximating the detour of a polygonal
chain. Computational Geometry: Theory and Applications,
27:123–134, 2004.

[5] J.E. Goodman and J. O’Rourke. Handbook of Discrete and

Computational Geometry, 2nd edition. CRC Press, 2004.

[6] M.T. Goodrich and R. Tamassia. Algorithm Design: Foun-

dations, Analysis, and Internet Examples. John Wiley &
Sons, 2002.

[7] R.C. Gonzalez and R.E. Woods. Digital Image Processing,
3rd edition. Pearson Prentice Hall, 2008.

[8] D. Eu and G.T. Toussaint. On approximating polygonal
curves in two and three dimensions. CVGIP: Graphical Mod-

els and Image Processing, 56:231–246, 1994.

[9] P.S. Heckbert and M. Garland. Survey of polygonal surface
simplification algorithms. Technical Report, Carnegie Mellon
University, School of Computer Science, 1997.

[10] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Com-
paring images using the hausdorff distance. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 15:850–
863, 1993.

[11] D. Huttenlocher and C. Olson. Automatic target recognition
by matching oriented edge pixels. IEEE Transactions on Im-

age Processing 6:103–113, 1997.

[12] H. Imai and M. Iri. Computational-geometric methods for
polygonal approximations of a curve. Computer Vision,

Graphics, and Image Processing, 36:31–41, 1986.

[13] M. Jiang and J. Gillespie. Engineering the divide-and-
conquer closest pair algorithm. Journal of Computer Science

and Technology, 22:532–540, 2007.

[14] L.J. Latecki, R. Lakämper, and U. Eckhardt. Shape descrip-
tors for non-rigid shapes with a single closed contour. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 424–429, 2000.

[15] A. Melkman and J. O’Rourke. On polygonal chain approxi-
mation. In G.T. Toussaint, editor, Computational Morphol-

ogy, pages 87–95, North-Holland, Amsterdam, 1988.

[16] G.A. Moore. Automatic scanning and computer processes for
the quantitative analysis of micrographs and equivalent sub-
jects. Pattern Recognition: Pictorial Pattern Recognition,
1:275–326, 1969.

[17] R. Nevatia and K.R. Babu. Linear feature extraction and de-
scription. Computer Graphics and Image Processing, 3:257–
269, 1980.

[18] L.G. Roberts. Machine perception of three dimensional
solids. In J.T. Tippett et al., editors, Optical and Electro-

Optical Information Processing, MIT Press, 1965.

[19] G.S. Robinson. Detection and coding of edges using direc-
tional masks. In Proceedings SPIE Conference on Advances

in Image Transmission Techniques, pages 117–125, August
1976.

[20] P.J. Tejada. A Computational Geometry Approach to Digi-

tal Image Contour Extraction. Master’s Thesis, Utah State
University, 2009.

[21] G.T. Toussaint. On the complexity of approximating polyg-
onal curves in the plane. In Proceedings of IASTED Inter-

national Symposium on Robotics and Automation, Lugano,
Switzerland, 1985.

[22] G.T. Toussaint. Computational geometry and computer vi-
sion. Contemporary Mathematics, 119:213–224, 1991.

[23] S.E. Umbaugh. Computer Imaging: Digital Image Analysis

and Processing. CRC Press, 2005.

