
CCCG 2009, Vancouver, BC, August 17–19, 2009

Enumeration of Polyominoes for p4 Tiling

Takashi HORIYAMA∗ Masato SAMEJIMA∗

Abstract

Polyominoes are the two dimensional shapes made by
connecting n unit squares, joined along their edges. In
this paper, we propose algorithms to enumerate poly-
ominoes for p4 tiling, i.e., those covering the plane by
only 90 degrees rotations around two rotation centers.
The conventional methods are basically trial and error,
i.e., they repeat generating polyominoes and checking
whether the shapes have been already generated. Our
approach is based on the reverse search, in which we
design rules to generate the next. This technique has
the following two characteristics: (1) No trial and error,
which implies that we can reduce the computation time.
(2) No need to store already enumerated polyominoes.
Thus, we can also reduce the space complexity. We also
implement the algorithm and enumerate all polyomi-
noes for p4 tiling up to n = 20.

1 Introduction

Polyominoes are the two dimensional shapes made by
connecting n equal-sized squares, joined along their
edges. The first pentomino (i.e, the polyomino consist-
ing with five squares) problem was proposed in 1907
by Dudeney, and the name polyomino was invented in
1953 by Golomb [5]. Since then, enumerating and count-
ing the number of polyominoes has been of interests in
combinatorial geometry, puzzle, and recreational math-
ematics (see, e.g., [8, 11]).

Another aspect of the interests is on polyomino
tiling [6, 14]: Enumerate or count the number of ways to
cover a given region by dominoes (or by specified poly-
ominoes in general tiling), where neither overlapping
nor hanging over the region is allowed. Enumeration
and counting for covering the two dimensional plane are
also considered. Recently, Fukuda et al. proposed a new
tiling problem, in which polyominoes for p4 tiling are
enumerated [3, 4]. More precisely, in the p4 tiling prob-
lem, the coordinates of the origin and the terminus are
given. Our task is to enumerate polyominoes that cover
the plane by only 90 degrees rotations around the origin
and the terminus. The approaches in [3, 4] are basically
trial and error, i.e., they repeat generating polyominoes
and checking whether the shapes have been already gen-
erated.

∗Graduate School of Science and Engineering, Saitama Uni-
versity, horiyama@al.ics.saitama-u.ac.jp

In this paper, we propose the use of the reverse
search [1], which gives efficient algorithms in various
combinatorial and geometric enumeration problem, see
e.g., [2, 7, 9, 10, 13]. Under this search scheme, we
first define a rooted tree whose nodes correspond to the
polyominoes for p4 tiling. By designing rules for ob-
taining child nodes from any node, we can enumerate all
nodes (i.e., all polyominoes) by traversing the tree. This
technique has the following two characteristics: (1) No
trial and error, since we have rules to generate the next.
Thus, we can reduce the computation time. (2) No need
to store already enumerated polyominoes. Thus, we can
also reduce the space complexity.

The rest of this paper is organized as follows. The
next section gives basic concepts on p4 tiling. Section 3
introduces the tree structures among polyominoes. In
Section 4, we propose algorithms to enumerate all poly-
ominoes for p4 tiling. Experimental results are also
shown in the section. Section 5 gives concluding re-
marks.

2 Preliminaries

In the p4 tiling problem, the coordinates of the two ro-
tation centers, the origin (0, 0) and the terminus (x, y)
are given, where x and y are integers. Since we can ex-
change the roles of the two rotation centers, without loss
of generality, we can assume y ≥ x ≥ 0. A polyomino
is a p4 tiling if it satisfies the following conditions: (1)
It covers the plane by the p4 symmetry group [12], i.e.,
by the rotations of 90 degrees around the origin and the
terminus. The cover (or called isohedral tiling) should
not contain gaps nor overlaps. (2) It includes both of
the origin and the terminus. (3) It is connected. Note
that two squares are not connected if they meet in only
one point. Our task is to enumerate all polyominoes for
p4 tiling.

In [3, 4], the properties of a polyomino for p4 tiling
are shown. (1) It consists of exactly n = (x2 + y2)/2
unit squares. Since x, y and n are integers, n can be 1,
2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, . . . Note that x and
y have the same odd/even parity. (2) The p4 symmetry
group induces n equivalence classes on the positions of
the unit squares. (3) No two unit squares belong to the
same equivalence class. Otherwise, we can move either
of the two to another position by the repetition of the 90
degrees rotations, which implies an overlap for covering
the plane.



21st Canadian Conference on Computational Geometry, 2009

1

3

4
52

Level

0

1

2

Figure 1: Levels for n = 5.

3 Family Trees

In this section, we define a tree structure T(x,y) among
polyominoes for p4 tiling with the origin and the ter-
minus (x, y). We first define neighboring polyominoes,
and then describe a tree on the relation.

The neighbors of a polyomino P are the polyominoes
by deleting a square from P and adding it to another po-
sition so that (1) the deleted and added positions belong
to the same equivalence class, (2) the resulting polyomi-
noes should include both of the origin and the terminus.
(3) the resulting polyominoes should keep the connectiv-
ity. Note that these three have the same meaning with
the three conditions of the polyominoes for p4 tiling de-
fined in Section 2.

Let the root node of T(x,y), called the root polyomino,
consist of the following two regions: (1) Rectangle of size
xy whose down-left is the origin and up-right is (x, y).
(2) Rectangle of size (y−x)2/2 whose down-left is (x, 0)
and up-right is ((x + y)/2, y − x). We can see that the
polyomino has size xy+(y−x)2/2 = (x2+y2)/2. In case
x = 0, the root polyomino consists of only rectangle (2).

The parent of a polyomino is one of its neighbors se-
lected by the following three rules: (Fundamental rule:
child → parent) Move a square so that its “level” be-
comes smaller. The level of a square is the distance
from the root polyomino. The squares in the root poly-
omino have level 0. Those next to the root have level 1.
Those next to the squares in level i have level i + 1.

(Additional rule 1: child → parent) If we can move
two or more squares, we select the square of the small-
est number. Figure 2 is an example of such situation.
From the shape of the bottom, we can move both of the
squares 4 and 5, and thus we have two choices to reach
the shape of the top: (1) Move square 4 first and then
square 5, and (2) move square 5 first and then square
4. According to the additional rule 1, we can uniquely
obtain the parent by moving square 4.

(Additional rule 2: child → parent) If we can move
a square to two or more possible positions of a smaller
level, we select the position of the smallest level. Fig-
ure 3 is an example of such situation. The shape of
the bottom-right in Figure 3 has the smallest movable

5

1

3

4
2

4
5

1

3
2

1

3
4 52

1
2
3

4
5

Figure 2: Additional rule 1 (child → parent).

level 1

5

1

3

4
2

4
5

1

3
2

54

1

3
2

level 0

level 2

Figure 3: Additional rule 2 (child → parent).

square 4 of level 2. The square has two possible positions
of level 0 and 1, where the three shapes are mutually
neighbors to each other. According to the additional
rule 2, we move square 4 to the position in level 0.

If two or more possible positions have the smallest
level at the same time in the additional rule 2, we break
the tie by their coordinates. For example, suppose we
have two positions (x1, y1) in level �1 and (x2, y2) in
level �2, where the coordinates give the down-left of the
positions. Then, the position (x1, y1) is smaller than
(x2, y2) if either of (1) �1 < �2, (2) �1 = �2 and x1 <
x2, and (3) �1 = �2, x1 = x2 and y1 < y2 hold. We
also regard this tie-breaking rule as a part of the level
comparison in the additional rule 2.

For any polyomino P , by repeating the process of ob-
taining the parent, we can observe a sequence from P to
the root polyomino. By merging such sequences for all
polyominoes, we can obtain the family tree T(x,y) for p4
tiling, in which nodes correspond to the polyominoes for
p4 tiling, and edges correspond to the pairs of polyomi-
noes and their parents. Figure 4 illustrates the family
tree T(1,3). The number of squares is n = 5.



CCCG 2009, Vancouver, BC, August 17–19, 2009

Figure 4: Family tree T(1,3).

4 Algorithms and Experimental Results

In this section, we propose an algorithm to enumerate
polyominoes for p4 tiling by traversing the family tree
T(x,y). The starting point is the root polyomino. If we
have rules to obtain all children of any node in T(x,y),
by repeatedly applying the rules, we can traverse T(x,y).

The rules from a parent to its children are obtained
by reverting the rules from a child to its parent defined
in Section 3. The reverse of the fundamental rule is as
follows: (Fundamental rule: parent → children) Move a
square so that its level becomes larger. To avoid gen-
erating the same polyomino twice, we use the following
additional rules.

(Additional rule 1: parent → children) If we can move
a square to the position of a smaller level, we prohibit
its any move. This rule is the reverse of the additional
rule 2 from a child to its parent. Figure 3 illustrates
such situation. While square 4 in the left shape has a
possible position in level 2 (the bottom-right shape), we
prohibit the move since it can be in level 0 that implies
the top-right shape is the parent of the bottom-right
shape.

(Additional rule 2: parent → children) Move a square
so that it has smaller number than the previously moved
square, or it prevent the move of the previously moved
square. In case the parent node is the root polyomino,
we assume that we have the previously moved square
that is larger than any of the squares. This rule is the
reverse of the additional rule 1 from a child to its parent.

We implemented the algorithm and enumerated poly-
ominoes for p4 tiling up to n = 20. Table 4 summarizes
the number of polyominoes and their computation time.
The second column indicates the the coordinates of the
corresponding terminus. It takes only 10.74 seconds for
18-ominoes and 46.26 seconds even for 20-ominoes on

Table 1: The numbers of polyominoes for p4 tiling and
their computation time.

n terminus #polyominoes Time (sec)
4 (2, 2) 9 0.01
5 (1, 3) 21 0.01
8 (0, 4) 166 0.01
9 (3, 3) 317 0.02

10 (2, 4) 596 0.03
13 (1, 5) 4,167 0.30
16 (4, 4) 26,448 2.56
17 (3, 5) 48,970 5.71
18 (0, 6) 90,652 10.74
20 (2, 6) 302,042 46.26

Intel Xeon CPU 3.0GHz. Figure 5 is a partial list of
enumerated 17-ominoes for p4 tiling.

5 Concluding Remarks

We proposed an algorithm to enumerate polyominoes
for p4 tiling. Our algorithm distinguishes two polyomi-
noes that are identical with each other if we exchange
the two rotation centers. To overcome this situation, we
should introduce a lexicographic order on the polyomi-
noes and generate only the lexicographically smallest
(or the largest) polyominoes.

The techniques in this paper are easily applicable to
other rotation symmetry groups p3 (120 degrees rota-
tion) and p6 (60 degrees rotation). Since there are 17
symmetry groups for tiling the plane [12], we should
address their enumerations.



21st Canadian Conference on Computational Geometry, 2009

Figure 5: Partial list of 17-ominoes for p4 tiling.

References

[1] D. Avis and K. Fukuda, Reverse Search for Enumer-
ation, Discrete Appl. Math., 6, pp.21–46, 1996.

[2] D. Avis, K. Naoki, M. Ohsaki, I. Streinu, S. Tani-
gawa, Enumerating Constrained Non-crossing Min-
imally Rigid Frameworks, Discrete and Computa-
tional Geometry, vol.40, no.1, pp.31–46, 2007.

[3] H. Fukuda, N. Mutoh, G. Nakamura, and
D. Schattschneider, A Method to Generate Polyomi-
noes and Polyiamonds for Tilings with Rotational
Symmetry, Graphs and Combinatrics, 23, pp.259–
267, 2007.

[4] H. Fukuda, N. Mutoh, G. Nakamura, and
D. Schattschneider, Enumeration of Polyominoes,
Polyiamonds and Polyhexs for Isohedral Tilings with
Rotational Symmetry, Lecture Notes in Computer
Science 4535, pp.68–78, 2008.

[5] S. Golomb, Polyominoes: puzzles, Patterns, Prob-
lems, and Packings, Princeton University Press,
Princeton, NJ, second edition, 1994.

[6] P. W. Kasteleyn, The Statistics of Dimers on a Lat-
tice: I. The Number of Dimer Arrangements on
a Quadratic Lattice, Physica, vol.27/12, pp.1209–
1225, 1961.

[7] Y. Kikuchi, K. Yamanaka, and S. Nakano, A Simple
Generation of Multi-dimensional Partitions, IEICE
Technical Reports, COMP2008-49, pp.23–29, 2008.

[8] D. E. Knuth, http://www-cs-faculty.stanford.
edu/~knuth/programs.html.

[9] Y. Matsui, R. Uehara, and T. Uno, Enumeration of
Perfect Sequences of Chordal Graph. Lecture Notes
in Computer Science, 5369, pp.859–870, 2008.

[10] S. Nakano, Enumerating Floorplans with n Rooms,
Lecture Notes in Computer Science, 2223, pp.104–
115, 2001.

[11] T. R. Parkin, L. J. Lander, and D. R. Parkin,
Polyomino Enumeration Results, SIAM Fall Meet-
ing, Santa Barbara, California, 1967.

[12] D. Schattschneider, The Plane Symmetry Groups
Their Recognition and Notation, American mathe-
matical monthly, 85, pp.439–450, 1978.

[13] K. Yamanaka, S. Kawano, Y. Kikuchi, and
S. Nakano, Constant Time Generation of Integer
Partitions, IEICE Trans. Fundamentals, vol.E90-A,
no.5, pp.888–895, 2007.

[14] M. Yoshida, Jinkōki, 1627.


