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Generalized jewels and the point placement problem
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Abstract

The point placement problem is to determine the posi-
tions of a linear set of points, P = {p1, p2, p3, . . . , pn},
uniquely, up to translation and reflection, from the
fewest possible distance queries between pairs of points.
Each distance query corresponds to an edge in a graph,
called point placement graph (ppg), whose vertex set is
P . The uniqueness requirement of the placement trans-
lates to line rigidity of the ppg.

In this paper we show how to construct in 2 rounds a
line rigid ppg of size 10n/7+O(1) from small rigid com-
ponents called 5:5 jewels, which are an extension of the
4:4 jewel of [2]. Though this result is slightly worse than
the 4n/3 + O(

√
n) upper bound, reported in [1], this is

more than offset by the potential for generalization of
this construction.

1 Introduction

Recently, many interesting new problems have surfaced
at the borderline of computational biology and compu-
tational geometry. The point placement problem is one
such.

A ppg on a linear set of points P = {p1, p2, p3, . . . , pn}
has P as its vertex set, with an edge between pi and
pj if the distance between pi and pj is known. G is
said to be line rigid if there is a unique placement of P
on a line L, up to translation and reflection, such that
the distances between adjacent points is consistent with
the edge lengths of G. The point placement problem
is to construct a rigid ppg from small components that
are either line-rigid or remain so under a certain set
of sufficient conditions on their edges. In its abstract
geometric form, we are given a set of pairwise distances
of a set of labeled points on a line and are required
to establish their relative linear order uniquely, up to
translation and reflection.

In the terminology of learning theory [2] this problem
could be restated as learning a set of points on a line,
adaptively and non-adaptively. In the latter scheme,
learning has to proceed based on a fixed set of given dis-
tances, while in the former learning proceeds in rounds,
with the edges queried in one round depending on those
queried in the previous rounds.
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The computational geometric version of this problem
was studied long back by Skiena et al. [5] who gave a
practical heuristic for the reconstruction. A polynomial
time algorithm was given by Daurat et al. [3].

In computational biology the problem resurfaced in
a slightly different form - pairwise distances are known
between some pairs of labeled points. The motivation
comes from a problem, known as the restriction site
mapping. Biologists discovered that certain restriction
enzymes cleave a DNA sequence at specific sites known
as restriction sites. For example, it was discovered by
Smith and Wilcox [6] that the restriction enzyme Hind
II cleaves DNA sequences at the restriction sites GT-
GCAC or GTTAAC. In lab experiments, by means of
fluorescent in situ hybridization (FISH experiments) bi-
ologists are able to measure the lengths of such cleaved
DNA strings. The relative order of the end-points have
to be determined as they appear on the line.

Early research on this problem was reported in [4]. In
this paper, our first principal reference is [2], where it
was shown that the jewel (Fig. 4) and K2,3 are both line-
rigid, as also how to build large rigid graphs of density
8/5 (this is an asymptotic measure of the number of
edges per point as the number of points go to infinity)
out of the jewel. Our second principal reference is the
work of [1] who improved many of the results of [2], their
principal contribution being the 3-round construction of
rigid graphs of density 5/4 from 6-cycles and a lower
bound on the number of queries necessary in any 2-
round algorithm.

In this paper, we determine conditions under which
generalizations of the jewel, called m : n jewels, remain
line rigid. We also show how to construct in 2 rounds
a line rigid point placement graph on n points, using
a 5:5 jewel as the basic component. The number of
edges queried during this construction is 10n/7 + O(1).
Though this result is slightly worse than the 4n/3 upper
bound, reported in [1], the construction is a lot simpler
and transparent, paving the way to possible further im-
provements.

2 Notations and terminology

Given a ppg, G, an assignment of edge lengths is said
to be valid if the distances between adjacent points on
L are consistent with these edge lengths. From now on,
we will assume this. G, is said to be line rigid if there is
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a unique placement of the vertices on a line for all valid
assignments of edge lengths.

Chin et al. [1] introduced the concept of a layer
graph, which is a kind of graph-drawing. We choose
two orthogonal directions x and y (actually, any two
non-parallel directions will do) and lay out each edge
of the placement graph along one of the two directions,
satisfying the following 4 properties:

P1 All edges are parallel to one of the two orthogonal
directions, x and y.

P2 The length of an edge is equal to its weight.

P3 Not all edges are along the same direction (thus a
layer graph has a two-dimensional extent).

P4 When the layer graph is collapsed onto a line, either
to the left or to the right, no two vertices coincide.

Here, we make extensive use of the following useful
result they proved.

Theorem 1 A ppg (G, l) is line rigid iff it cannot be
drawn as a layer graph.

3 Generalized jewels

An m : n jewel consists of a cycle, C1 of length m and
another cycle, C2, of length n that are joined by a strut
going between two vertices Y (of C1) and Z (of C2),
and hinged at a third common vertex, X (Fig. 1).

In this section, we classify the layer graphs of an m : n
jewel, and find conditions that make an m : n jewel
line rigid. Finally, we consider concrete examples of the
4 : 4, 5 : 4 and the 5 : 5 jewels.

X

Y Z

C1 C2

Figure 1: m : n-Jewel.
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Figure 2: Configura-
tion of L1 and L2.

Theorem 2 Let Li = (Vi, Ei) denote a layer graph of
Ci, when it can be so drawn, or the line on which all its
points lie, where i = 1, 2. Let L = (V,E) denote a layer
graph of an m : n jewel, when it can be so drawn or a
line on which all its points lie, where V = V1

⋃
V2 and

E = E1

⋃
E2

⋃
{Y Z}.

1. If L1 and L2 are both lines then so is L.

2. If L1 is a line and L2 is a layer graph, then L is a
layer graph if and only if XZ is not a diagonal of
a rectangle in L2

3. If L2 is a line and L1 is a layer graph, then L is a
layer graph if and only if XY is not a diagonal of
a rectangle in L1

4. If both L1 and L2 are layer graphs, then L is a
layer graph if and only if not both XY and XZ are
diagonals of rectangles

Proof. If L1 and L2 are both lines then all the points
of L are on a line. Therefore L is not a layer graph.
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XZ is a diagonal
X Y
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MP

QX Z Y
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Figure 3: Configurations of L2.

Consider Case 2. Let XZ be a diagonal of a rectangle
(Fig. 3). Since Y and Z are connected, Y must be
on line joining M and Z or on the line joining N and
Z. But L1 is a line. Hence X and Y must be along
a horizontal line or a vertical line. Therefore Y must
coincide with M or N in Fig. 3. Now suppose XZ is
not a diagonal of a rectangle. If X and Z are along a
horizontal line or a vertical line then we can place all
other points of L1 on this line. If XZ is not a vertical
line or a horizontal line (Fig. 3) then we can place Y
at the intersection of a vertical line and a horizontal
line passing through X and Z such that Y does not
coincide with any other point. Then we can place all
other points on L1 on the line passing through XY . By
similar arguments, we can prove Case 3.

Finally, assume that both XY and XZ are diagonals
of rectangles (Fig. 2) in the layer graphs L1 and L2 re-
spectively. If we place Y at Y ′ then P or Q will coincide
with M . If we place Y at Y ′′ then P or Q will coin-
cide with N . Therefore L is not a layer graph. If both
XY and XZ are not diagonals then we can find a layer
graph L where no point of L1 coincides with any other
point of L2.

�

Thus we have the following observation.

Observation 1 There are three disjoint classes of layer
graphs of an m : n jewel (Fig. 1). (1) All the points of
C1 are on a line (C1 collapses) but C2 does not collapse
and XZ is not a diagonal of a rectangle, (2) All the
points of C2 are on a line (C2 collapses) but C1 does
not collapse and XY is not a diagonal of a rectangle,
(3) Neither C1 nor C2 collapses and not both XY and
XZ are diagonals of rectangles.

Theorem 3 Let C1 be an m-cycle and let C2 be an n-
cycle (Fig. 1). If there is a layer graph for m : n jewel
then either there is a layer graph for C1 or all the points
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of C1 are on a line and either there is a layer graph for
C2 or all the points of C2 are on a line.

Proof. Let L be a layer graph for an m : n jewel. If
we remove from L all the edges corresponding to C2, all
the nodes corresponding to C2 except X and the edge
corresponding to Y Z, then the residual graph L1 must
satisfy properties P1, P2 and P4 of a layer graph. If it
also satisfies P3 then it would be a layer graph of C1,
otherwise all the points of C1 are on a line. Similarly,
we can show that there is a layer graph L2 for C2 or all
the points of C2 are on a line L2. �

Theorem 4 Suppose we have an m : n jewel. All the
conditions that prevent C1 from being drawn as a layer
graph, provided XY is not a diagonal of a rectangle, plus
all the conditions that prevent C2 from being drawn as a
layer graph provided XZ is not a diagonal of a rectangle
constitute a set of sufficient conditions that make an
m : n jewel line rigid.

Proof. The proof follows easily from Theorem 3 and
Observation 1. �

Theorem 5 The minimum number of conditions for
making an n-cycle line rigid is 2n−1 − n2−n+2

2

By Theorem 4 and by Theorem 5 we can find 2m−1 +
2n−1 − 1

4

(
3m2 + 3n2 − 6m− 6n + 15

)
+ 1

8 [(−1)m+1 +
(−1)n+1] conditions which are sufficient for an m : n
jewel to be line rigid.

In this section we show that the 4:4 jewel is line rigid
by drawing layer graphs. We then investigate condi-
tions under which m : n jewels remain rigid for different
values of n and m.

3.1 4-cycle to 4 : 4 Jewel

Observation 2 A four cycle XAY B is line rigid if
|XA| 6= |Y B|

A proof of the above fundamental observation can be
found in [2]. Figure 4 shown below is called a jewel in
[2]. In view of our subsequent generalizations, we call it
instead 4 : 4 jewel.
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Figure 4: Point placement graphs for 4 : 4, 5 : 4 and
5 : 5 jewels.

Theorem 6 The 4 : 4 jewel is line rigid.

Proof. We can easily verify that there is no layer graph
that satisfies any of the condition of Observation 1.
Therefore there is no layer graph for the 4 : 4 jewel. �

3.2 5-cycle to 5 : 4-Jewel to 5 : 5-Jewel

We will use theorem 4 to find the conditions that makes
a 5 : 4 jewel line rigid. There are five classes of layer
graphs of a 5 cycle XABY C. We get one condition
from each class of layer graph (Fig. 5). For two of those
classes we see that XY is a diagonal of a rectangle.
Hence we will get three conditions that will prevent a
5 cycle from being a layer graph where XY is not a
diagonal. There is no layer graph of the 4 cycle XPZQ
where XZ is not a diagonal. Therefore, by the Theorem
4 we can say that |XC| 6= |AB|, |XA| 6= |Y B| and
|Y C| 6= |AB| are sufficient for the 5:4 jewel in figure 4
to be line rigid.

X A B

YC

X A

B

YC
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BY

C
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BY

C

Figure 5: Classes of layer graphs of 5-cycle.

Similarly we can find the conditions for a 5:5 jewel
by using Theorem 4. We will get three conditions from
each 5 cycle. Therefore there are six conditions that
will make a 5:5 jewel line rigid. These conditions are
|XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB|, |XR| 6=
|PQ|, |ZR| 6= |PQ| and |XP | 6= |ZQ|.

4 A 2-round algorithm for a 5:5 jewel

This algorithm makes crucial use of the following obser-
vation :

Observation 3 At a point p on a line there can be at
most two edges incident that have the same length.

We want to make the 5:5 jewel line rigid irrespec-
tive of the values of distances |AB|, |XC|, |PQ| and
|XR| so that we can query the distances in such a way
that the rigidity conditions are satisfied. For that we
need to reformulate the four conditions |XC| 6= |AB|,
|Y C| 6= |AB|, |XR| 6= |PQ| and |ZR| 6= |PQ| with
other suitable equivalent ones.

From Figure 5 we see that we can replace the condi-
tion |XC| 6= |AB| by the equivalent condition |XA| 6=
|Y B|± |Y C|. Similarly, we can replace |XR| 6= |PQ| by
|XP | 6= |ZQ| ± |ZR|.

To reformulate the condition |Y C| 6= |AB| we draw
the layer graphs of the whole jewel in such a way that
it violates this condition (Figs. 6(a) to 6(d)). From
these figures we see that we can replace this condi-
tion by the conditions: |XP | 6= |ZQ| ± |Y C| ± |Y Z|
and |XP | 6= |ZQ| ± |ZR| (Fig. 6(a)), |ZR| 6= |Y C|
(Fig. 6(b)), |XA| 6= |ZR| ± |Y B| ± |Y Z| (Fig. 6(c)),
and |XA| 6= |Y B| ± |Y Z| (Fig. 6(d)). Among them
|XP | 6= |ZQ| ± |ZR| has already been found. We have
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four new conditions such as |XP | 6= |ZQ| ± |Y C| ±
|Y Z|, |ZR| 6= |Y C|, |XA| 6= |ZR| ± |Y B| ± |Y Z|
and |XA| 6= |Y B| ± |Y Z|. Similarly, to replace the
condition |ZR| 6= |PQ| we need the four conditions:
|XA| 6= |ZR| ± |Y B| ± |Y Z|, |ZR| 6= |Y C|, |XP | 6=
|ZQ| ± |Y C| ± |Y Z| and |XP | 6= |ZQ| ± |Y Z|. Among
these two groups |XA| 6= |ZR| ± |Y B| ± |Y Z|, |ZR| 6=
|Y C| and |XP | 6= |ZQ| ± |Y C| ± |Y Z| are common.

X A

BY
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Z R

Q P

Q

P X A

BY

C

P Q

Q Q

P

Z

R

P

X A

Y

C X A

BY

CP/Q

Z B

P

Q

PP

Q

Q

P

QZ

R

P/Q

(d) YZ is horizontal. XR and ZR
are vertical.

(b) YZ is horizontal. XR is horizontal
and ZR is vertical.

(c) YZ is horizontal. XR is vertical
and ZR is horizontal.

(a) YZ is vertical. There is only
one position for R.

R

Figure 6: Replacing condition |Y C| 6= |AB|.

Thus, we have the following nine distinct conditions
to make the 5:5 jewel line rigid: |Y B| 6= |XA|,
|Y B| 6= |XA| ± |Y Z|, |Y C| 6= |Y B| ± |XA|,
|ZQ| 6= |XP |, |ZQ| 6= |XP | ± |Y Z|, |ZQ| 6=
|Y C|± |XP |± |Y Z|, |ZR| 6= |Y C|, |ZR| 6= |ZQ|± |XP |
and |ZR| 6= |Y B| ± |XA| ± |Y Z|.

Algorithm 1. For convenience we change the labels as
follows: X → Xi, A → Ai, B → Bj , C → Bk, P → Pi,
Q → Qm and R → Ql. Let the total number of points
be n = 7b+40, where b is a positive integer. In the first
round, we choose 6b + 39 distance queries represented
by the edges in the graph in Fig. 7. There are 2b + 10
children Bj(j = 1, ..., 2b + 10) rooted at Y and 2b + 28
children Ql(l = 1, ..., 2b + 28) rooted at Z. We group
the remaining 3b nodes into groups of 3 as (Ai, Xi, Pi)
(i = 1, ..., b) and query the distances |AiXi| and |XiPi|,
(i = 1, ..., b).

In the second round, for each 2-link (AiXi, XiPi) we
find edges Y Bj , Y Bk rooted at Y and ZQl, ZQm rooted
at Z to form an extended jewel which satisfy the condi-
tions for rigidity. Then we query the distances |AiBj |,
|XiBk|, |XiQl| and |PiQm|. The 10 additional children
at Y and the 28 additional children at Z provide us with
the latitude to choose edges that satisfy the above con-
ditions for rigidity. Using Observation 3, we can show
that a maximum of 38 edges do not satisfy the condi-
tions for rigidity. So, for each 2-link (AiXi, XiPi) we
can always find edges Y Bj , Y Bk, ZQl and ZQm for
the extended jewel such that the conditions for rigidity
are satisfied.

For each of the unused 10 leaves Bj of node Y we
query the distance BjZ. Similarly, for each of the 28

...

Y Z

Bj Bk Ql Qm

Xi

Ai Pi

b 2-links
...

2b + 10 leaves 2b + 28 leaves
...... ...

Figure 7: Queries in the first round for 5:5 jewel.

unused leaves of Z we query its distance from Y .
We need 6b+39 queries in the first round and 4b+38

queries in the second round. In total 10b + 77 pairwise
distances are to be queried for the placement of 7b + 40
points. Thus, 10n/7+O(1) queries are sufficient to place
n distinct points on a line using two rounds.

5 Conclusions

It would be interesting to know if extending the results
to 6:6, 7:7 and 8:8 jewels improve the upper bounds
for two or more rounds. Preliminary indications seem
positive. Another interesting direction is to consider
learning a set of points in the plane. We have not seen
any published work on this topic.
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