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Abstract

This paper introduces a new measure of quality for
terrain surface simplification aiming at preserving the
slope of the surface, as well as a new simplification algo-
rithm which satisfies this measure. Experimental results
and comparisons with other simplification algorithms
show the effectiveness of proposed algorithm according
to some quality measures.

1 Introduction

In this paper we study one of the most important prob-
lems on terrains; simplifying the terrain surface. One
common representation of terrain data in gis (geograph-
ical information systems) is the tin (triangulated irreg-
ular network). A tin is obtained by triangulating a
collection of irregularly spaced sample points (e.g., of
a rectangular region R), and then giving each triangu-
lation vertex the elevation (z-coordinate) of the corre-
sponding sample point. In many applications the input
terrain model is huge, and since the computational cost
of using a model is directly related to its complexity, it
is useful to have simpler versions of complex models. So,
it is often necessary to decrease the input size prior to
using it for analysis or visualization. Surface simplifica-
tion has applications in gis, cartography, computer vi-
sion, computer graphics and fem (finite element meth-
ods) [8]. The excellent survey article by Heckbert and
Garland [8] gives an overview of different kinds of ter-
rain simplification algorithms. Garland and Heckbert
[6] categorizes the surface simplification algorithms into
three classes:

� Vertex Decimation: This method iteratively re-
moves a vertex and its adjacent faces, and retri-
angulates the resulting hole [1], [2].

� Vertex Clustering: The original model is divided
into a grid. Then, the vertices within each cell
are clustered together into a single vertex, and the
model faces are updated accordingly [9].

� Edge Contraction: This method iteratively selects
an edge and then contracting it [6].
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There are many possible ways to measure the degree
of similarity between the original and simplified terrains;
some are exact (e.g., specifying an exact numerical er-
ror tolerance ε such that the simplified terrain must lie
within vertical distance ε of the original, at every point
(x, y) ∈ R), while other methods rely on qualitative no-
tions of similarity (e.g., based on human perception of
similarity) [2]. Most papers dealing with terrain simpli-
fication consider the preservation of some quality mea-
sures such as inter-point visibility, inter-point distance,
area, ridge and drainage networks. Ben-Moshe et al. [1],
[2] suggested two quality measures based on preserving
the inter-point visibility, and inter-point distance. Bose
et al. [5] study the area-preserving simplification prob-
lem for x-monotone polygonal paths in the plane. Gud-
mundsson et al. [7] studied the distance-preserving of
polygonal paths. In this paper we study a new mea-
sure of quality based on slope preservation. Informally,
a simplification is considered “good” by slope measure
if for most points p of output terrain, the slope at p on
the simplified terrain is not significantly different from
the corresponding slope on the original terrain. The im-
portance of slopes for terrains was also observed in [11].
We introduce a new vertex decimation simplification al-
gorithm aiming at preserving the slope of the terrain.
It improves other quality measures such as inter-point
visibility preservation and ideal measure.

The remaining of this paper organized as follows. In
Section 2 we propose our simplification algorithm in
more details. Section 3 gives the experimental results
and comparison with other simplification algorithms.
Finally, we conclude this paper in Section 4.

2 The Algorithm

Let the Delaunay triangulation T be the original terrain
model of a 2D point set P of n points, and T ′ be a
simplified terrain with m vertices, such that n ≥ m.
Let P2R = m

n ∗ 100 (percent to remain) be a parameter
that tells us what percent of the vertices of T should
remain in the output. We also define the simplification
rate (reduction rate) to be β = b n

mc; it means that for
each set of β vertices from the input model, at most one
vertex can remain in the output.

Our method for simplification of T is based on the
following observations. Since the slope inconsistency is
attributable to the presence of ridges and valleys, our
heuristic is designed to place priority on preserving the
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most salient ridges and deep valleys. Little et al. [12]
showed that including ridges and valleys initially re-
duces the error in the resulting approximated terrain.
The algorithm consists of the following three stages:

1. First, we compute the ridge and drainage networks,
which are collections of chains of edges of T .

2. Next, we approximate the ridge and drainage net-
works accurately. The resulting approximated net-
works subdivide the terrain into planar patches.

3. Finally, we simplify the patches separately by a new
slope preserver heuristic.

2.1 Computing the networks

The drainage network is comprised of a collection of
chains of valley edges of T [10]. The ridge network is
closely related to the drainage network of reverse T . A
valley (edge) component is a maximal set of valley edges
such that flow from all of these valley edges reaches the
lowest vertex (pit or local minima) incident to these
valley edges. So a valley component is a tree rooted at
a pit (see Figure 1-left). The drainage network in a tin
is a collection of these trees. So, it has the topology of
a forest (union of trees). Biniaz et al. [3] computed the
drainage network of T in O(n). They find all the local
minima (roots) of the terrain first, and then, explore the
valley edges connected to local minima in bfs manner.
The ridge network of T can be computed as the drainage
network of invert(T ).

2.2 Approximating the networks

Moshe et al. [1] presented a heuristic for approximating
a valley component which uses two operations collapse
and refine. Here, we introduce a more accurate heuristic
to simplify each component:

1. break down the valley component (tree) into convex
valley chains, and

2. replace each convex chain by a single segment.

We define a convex valley chain as a path of valley edges
in such a way that the signed area of each of its three
consequent vertices are identical; all positive or all neg-
ative (see Figure 1-right). We limit each convex valley
chain C by 1 ≤ length(C) < β.

For a given convex valley chain C, we define its turn-
ing angle as follows: let C be defined by the edges
~e1, ~e2, ..., ~em (1 < m < β). The turning angle of C is de-
fined as α(C) =

∑m−1
k=1 ](~ek, ~ek+1), where ](~ek, ~ek+1)

is the turn from ~ek to ~ek+1. If m = 1 then α(C) = 0. In
the case α(C) ≤ π, the turning angle of C can be com-
puted in O(1) as the angle between the first segment
and the last one.

root

~ei

~ej

α(~ei, ~ej)

Figure 1: A valley component and a convex chain.

We decompose a valley component into convex chains
in O(s), by performing a preorder traversal, where s
(s ≤ n) denotes the size of valley component. During
the traversal, we stop the current chain C and start new
chain(s) if one of the following conditions hold:

1. the turning direction change: this condition guar-
antees the convexity of C.

2. reach a vertex with degree greater than two: this
guarantees that C be a path.

3. length(C) ≥ β: it prevent the construction of long
chains, and guarantees that the simplification be
uniformly distributed along the network.

4. α(C) ≥ π/2: it prevent the construction of cyclic
components (described below).

These conditions entail that the structure of approx-
imated network is not significantly different from the
original network. Figure 2-left shows the decomposi-
tion of the network with β = 4. The chain x terminated
and a new chain y is started because the counterclock-
wise turn changed to clockwise turn (cond. 1). At the
points with degree greater than 2, new chains are started
(cond. 2). The chain z terminated, because it length
reaches the maximum value 4 (cond. 3). The chain w
terminated, because addition of another edge leads to
α(w) becomes greater than π/2 (cond. 4). To simplify
each multi-edge chain C, we use the collapse operation
which replace C with a single edge (Figure 2-right).

x
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Figure 2: Network simplification.

A network may contains cycle form components. Cy-
cles in networks of valleys are not just same as the cycles
in graphs. We call a valley chain C, cyclic, if α(C) ≥ 2π.
Yu et al. [10] give examples of cyclic components. Fig-
ure 3-left shows a cyclic component. In high simplifica-
tion rates, the VPTS algorithm [1] approximates it as a
single edge (Figure 3-middle), but our method approx-
imates it as Figure 3-right, because of cond. 4.
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Figure 3: Cyclic component simplification.

If we desired a more simplified network, it takes in
two ways: (i) Fine tuning of the parameters α and β;
increase in α and β leads to more simplified network. (ii)
Perform the simplification process iteratively (i.e., apply
the above method on the simplified network again).

The resulting approximated networks subdivide the
terrain into patches (flat regions). The patches take
place between ridges and valleys.

2.3 Approximating the patches

We simplify the patches separately by a new vertex-
decimation slope preserver heuristic. The main algo-
rithm is done by first adding the edges of the approxi-
mated networks as constraints to the Delaunay triangu-
lation that is being computed, and then apply the slope
preserver heuristic on it.

flat regions

Figure 4: Some flat regions.

The patches are locally flat (planar) regions, witch
are more slope consistent parts of the terrain (see Fig-
ure 4). The slope preserver heuristic iteratively removes
the vertices of maximum smoothness from the patches
and update the triangulation. These vertices do not in-
fluence the slope consistency, and removing them don’t
affect the slope considerably. Biniaz et al. [4] showed
that the slope consistency in a terrain is directly related
to its dihedral angles (the angle between two contiguous
triangles which is less than or equal to π); as the dihe-
dral angles become wider and approach π, the surface
becomes more plain and consistent. Thus, a locally flat
region consists of vertices of wide dihedral angles. We
define the smoothness (flatness) of a vertex v as mean
of all dihedral angles incident to it, which is a value
between 0 and π:

ST (v) =

∑
u∈N [v] da(v, u)

|N [v]|
(1)

where, N [v] denotes the set of neighbors of v in T ,
and da(v, u) is the dihedral angle of the edge (v, u).

The smoothness of a vertex v is computed right at the
beginning, and is updated when ever v is affected by
the deletion of another vertex. If v has plain dihedral
angles, then it belongs to a flat part of T and must be
omitted.

3 Experimental Results and Comparisons

This section gives some results of our experiments with
SPTS, as well as comparisons with two other software
packages: QSlim [6] and VPTS [1]. Our software pack-
age, SPTS (Slope Preserving Terrain Simplification),
was developed in C++, and use CGAL-3.3.1 library.
The input terrains were chosen from four different ge-
ographic regions: California Hot Springs, Quinn Peak,
Sphinx Lakes, and Split Mountains. The terrains have
roughly 20,000 vertices. Our tests and comparisons are
based on three measure of quality: slope preservation,
inter-point visibility preservation, and ideal measure.

3.1 Experiments of Slope Measure

For each terrain T , four simplifications P2R = 20%,
40%, 60%, and 80% were computed. We compute the
quality of simplification T

′
of T as follows. For each

vertex v ∈ T
′
we characterize the error at v as the ratio

δv =
|ST (v)−S

T
′ (v)|

π , and the error of simplification T
′

is computed as the average over all the vertex errors,

∆T ′ =
∑

v∈V (T
′ ) δv

|V (T ′ )| which is a value between 0 and 1.

Table 1 shows the error ∆T ′ of simplified terrains. It
is clear that, the error decreases as P2R increases. In
all cases, SPTS is significantly better than VPTS, and
VPTS is slightly better than QSlim. Table 2 shows the
average simplification size over four input terrains that
is needed to achieve a given threshold error. For exam-
ple to achieve the threshold error of 0.005, the minimum
average simplification size that is needed by SPTS is
78%, while it is 92% for VPTS, and 96% for QSlim.

Table 1: Slope measure, simplification errors.
California Hot Springs Quinn Peak

QSlim VPTS SPTS QSlim VPTS SPTS

20% 0.201 0.143 0.092 0.196 0.145 0.088
40% 0.145 0.101 0.051 0.142 0.099 0.049
60% 0.102 0.070 0.008 0.113 0.068 0.008
80% 0.074 0.048 0.003 0.080 0.038 0.003

Sphinx Lakes Split Mountains
QSlim VPTS SPTS QSlim VPTS SPTS

20% 0.220 0.135 0.088 0.211 0.147 0.090
40% 0.161 0.098 0.047 0.153 0.098 0.050
60% 0.122 0.068 0.008 0.112 0.067 0.009
80% 0.091 0.039 0.004 0.088 0.039 0.005
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Table 3: Visibility measure, average of σχ.
P2R 3% 5% 10%
sample size QSlim VPTS SPTS QSlim VPTS SPTS QSlim VPTS SPTS

30 0.887 0.897 0.929 0.937 0.948 0.964 0.954 0.956 0.984
50 0.895 0.912 0.935 0.943 0.941 0.966 0.960 0.967 0.985
100 0.890 0.907 0.937 0.953 0.956 0.970 0.969 0.976 0.989

Table 2: Average simplification size.
threshold 0.001 0.005 0.010 0.050 0.100 0.500

QSlim 99% 96% 93% 90% 67% 13%
VPTS 97% 92% 88% 76% 39% 10%
SPTS 89% 78% 57% 39% 17% 4%

3.2 Experiments of Visibility Measure

A simplification is considered “good” by visibility mea-
sure if for any set χ of pairs of points from the under-
lying rectangle R, most of the visibility information is
preserved, i.e. for most pairs {p, q} ∈ χ, if the points on
T corresponding to p and q are visible (resp. not visi-
ble) to each other, then the corresponding points in T

′

should also be visible (resp. not visible) to each other
[1]. Let ν be the set of pairs {p, q} ∈ χ for which vis-
ibility is the same. The visibility similarity, σχ(T, T

′
),

is defined as σχ = |ν|
|χ| .

We compare SPTS with QSlim and VPTS for visi-
bility measure. We pick random samples of size 30, 50
and 100 points from the underlying rectangle R. For
each pairs {p, q} ∈ χ in each sample, we determined
whether p and q see each other in T and T ′, or not. Ta-
ble 3 shows the average values of σχ obtained from four
terrains, for three simplifications. SPTS improves the
visibility similarity, because of the fact that the blocking
of the view from a point is attributable to the presence
of ridges, and SPTS approximates the ridges by more
accurate conditions than VPTS.

3.3 Experiments of Ideal Measure

We define the ideal measure as the volume enclosed be-
tween the surface of input terrain and the surface of
simplified terrain. We estimate it as the average vertical
distance (i.e., along the z-axis) between a random sam-
ple of points on the input terrain and the correspond-
ing points in the surface of simplification (see Table 4).
SPTS improves the ideal measure, because of deleting
the vertices from flat regions makes smaller volume be-
tween the surfaces.

Table 4: Ideal measure.
P2R 20% 40% 60% 80%

QSlim 0.100 0.050 0.014 0.007
VPTS 0.102 0.063 0.019 0.010
SPTS 0.070 0.026 0.007 0.002

4 Conclusion

We proposed a new quality measure for terrain simplifi-
cation based on preserving slope of the surface, as well as
a new simplification algorithm. The algorithm approx-
imates the ridge and drainage networks accurately, and
then simplify the patches which formed between them
by a new heuristic. It improves other quality measures
such as inter-point visibility and ideal measure.
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