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Rigid Components of Random Graphs

Louis Theran∗

Abstract

We study the emergence of rigid components in an
Erdős-Rényi random graph G (n, p), using the param-
eterization p = c/n for a fixed constant c > 0. We show
that for all c > 0, almost surely all rigid components
have size 2, 3 or Ω(n); for c > 4, we show that almost
surely there is a rigid component of size at least n/10.

1 Introduction

The problem of the phase transition between liquid and
solid states of glasses is an important open problem in
material physics [1]. Glasses are highly disordered solids
that undergo a rapid transition as they cool.

To study the phase transition, Thorpe [8] proposed a
geometric model for the glass problem, in which bonds
between the atoms are viewed as fixed-length bars
(the bonds) connected by universal joints (the atoms)
with full rotational degrees of freedom. Such a structure
is called a planar bar-and-joint framework (shortly
bar-joint framework, or simply framework), and these
are fundamental objects of study in the field of combi-
natorial rigidity.

A bar-joint framework is rigid if the only continuous
motions of the joints preserving the lengths and con-
nectivity of the bars are rigid motions of the plane, and
otherwise it is flexible. When a framework is flexible, it
decomposes uniquely into inclusion-wise maximal rigid
substructures which are called rigid components; a
rigid component is non-trivial if it is larger than a single
edge. In the planar case, the celebrated Maxwell-Laman
Theorem [10] gives a complete characterization of gener-
ically minimally rigid bar-joint frameworks in terms of
a combinatorial condition, which allows rigidity proper-
ties to be studied in terms of efficiently checkable graph
properties.

The sequence of papers [3, 7, 8, 17, 18] studies the
emergence of large rigid subgraphs in graphs generated
by various stochastic processes, with the edge probabil-
ities and underlying topologies used to model the tem-
perature and chemical composition of the system. Two
important observations are that: (1) very large rigid
substructures emerge very rapidly; (2) the transition
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appears to occur slightly below average degree 4 in the
the planar bar-joint model.

Main result and novelty

In this paper, we study the emergence of rigid compo-
nents in random graphs generated by a simple, well-
known stochastic process: the Erdős-Rényi random
graph model G (n, p), in which each edge is included
with probability p, independently. We consider edge
probabilities of the form p = c/n, where c is a fixed
constant, and consider the size of the largest rigid com-
ponents in G (n, p).

Theorem 1 (Size and emergence of a large rigid
component). Let c > 0 be a constant. Almost surely,
all rigid components in G (n, c/n) span 2, 3, or Ω(n)
vertices. If c > 4, then almost surely there is a rigid
component of size at least n/10.

A random graph has a property almost surely if the
probability of G (n, p) having it tends to one as n→∞.

To the best of our knowledge, this is the first proven
result on the emergence of rigid components in random
graphs that have, almost surely, close to 2n − 3 edges
(the number required for minimal rigidity) but no other
special assumptions, such as being d-regular or a sub-
graph of a hexagonal lattice, both of which play critical
roles in the previous results on the rigidity of random
graphs.

It is important to note that rigidity is inherently a
non-local phenomenon: adding a single edge to a graph
that has no non-trivial rigid components may rigidify
the entire graph (or removing a single edge may cause
a large rigid component to shatter). It is this property
of rigidity that distinguishes it from the well-studied k-
core problem in random graph theory.

In the proof of Theorem 1, we formalize the exper-
imental observation that rigid components, once they
appear, are very likely to grow rapidly. Although the
proof of Theorem 1 relies mainly on standard tools for
bounding sums of independent random variables, our re-
sult seems to be the first that directly analyzes rigidity
properties of G (n, p), rather than reducing to a connec-
tivity property.

Related work.

Rigidity: Jackson, et al. [6] studied the space of ran-
dom 4-regular graphs and showed that they are almost
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surely globally rigid. The approach in [6] is based on
combining results on the linking rigidity and connec-
tivity proved in [6] and also [5, 12] with connectivity
properties of 4-regular random graphs. These tech-
niques rely in an essential way on the 4-regular model;
in the G (n, p) model they are able to prove that when
p = n−1(log n + 2 log log n + ω(1)), G (n, p) is almost
surely rigid, but have no results for G (n, p) when the
expected number of edges is O(n). The proof of the
G (n, p) result from [6] relies on the existence of a very
large 6-core, so it cannot be easily adapted to our set-
ting when c is close to 4 (below the threshold for even
the 4-core to emerge [15]).

Percolation: Holroyd [4] extended the formal study
of connectivity percolation to rigidity percolation in the
hexagonal lattice. He shows, via a reduction to con-
nectivity percolation, that there is an edge-probability
threshold for the existence of an infinite∗ rigid compo-
nent in the hexagonal lattice which is higher than that
for connectivity. It is also shown in [4] that the infinite
rigid component, when it exists, is unique for all but
a countable set of edge probabilities p. All the proofs
in [4] rely in an essential way on the structure of the
hexagonal lattice (in particular that a suitably defined
tree in its dual graph is a dual of a rigid component).

Random graphs: The fundamental k-core problem in
random graph theory has been studied extensively, with
a number of complete solutions.  Luczak [13] first proved
that for k ≥ 3, the (it is always unique, if present) k-
core is, almost surely, either empty or has linear size.
Pittel, et al. solved the k-core problem, giving an exact
threshold for its emergence and bounds on its size [15].
Janson and Luczak gave an alternative proof of this re-
sult, using simpler stochastic processes [9]. All these
results are based on analyzing a process that removes
low-degree vertices one at a time, which does not apply
in the rigidity setting.

2 Preliminaries

In this section we give the technical preliminaries re-
quired for the proof of Theorem 1.

Combinatorial rigidity

An abstract bar-and-joint framework (G, `) is a
graph G = (V,E) and vector of non-negative edge
lengths ` = `ij , for each edge ij ∈ E. A realization
G(p) of the abstract framework (G, `) is an embedding
of G onto the planar point set p = (pi)n

1 with the prop-
erty that for all edges ij ∈ E, ||pi − pj || = `ij . The
framework (G, `) is rigid if it has only a discrete set of
realizations modulo trivial plane motions, and is flexi-
ble otherwise.

∗Rigidity of infinite frameworks is a subtle concept, and [4]
devotes careful attention to its development.

A graph G = (V,E) is (2, 3)-sparse if every subgraph
induced by n′ ≥ 2 vertices has at most 2n′ − 3 edges.
If, in addition, G has 2n − 3 edges, G is (2, 3)-tight
(shortly, Laman).

The Maxwell-Laman Theorem completely character-
izes the rigidity of generic planar bar-joint frameworks.

Proposition 2 (Maxwell-Laman Theorem [10]). A
generic bar-joint framework in the plane is minimally
rigid if and only if its graph is (2, 3)-tight.

Genericity is a subtle concept, and we refer the reader
to our paper [16] for a detailed discussion. Here, all
we need to know is that almost all p are generic, and
that all generic frameworks G(p) have the same rigidity
properties.

If G contains a spanning Laman graph it is (2, 3)-
spanning (shortly rigid). A rigid induced subgraph is
called a rigid block (shortly block), and an inclusion-
wise maximal block is a rigid component. By [11,
Theorem 5], every graph decomposes uniquely into rigid
components, and every edge is spanned by exactly one
rigid component. A rigid component is non-trivial if it
contains more than one edge. Figure 1(a) shows and ex-
ample of a Laman graphs. Figure 1(b) has an example
of a flexible graph with its rigid components indicated;
they are the two triangles and two trivial rigid compo-
nents consisting of a single edge only.

(a) (b)

Figure 1: Laman graphs and rigid components: (a) a
Laman graph on n = 6 vertices; (b) a flexible graph
with its rigid components indicated.

We summarize the properties of rigid graphs and com-
ponents that we will use below in the following propo-
sition.

Proposition 3 (Properties of rigid graphs and
rigid components). Let G = (V,E) be a simple graph
with n vertices: (a) G decomposes uniquely into rigid
components, and every edge is in some component [11,
Theorem 5]; (b) Adding an edge to a graph G never de-
creases the size of any rigid component [11, Theorem 2];
(c) If G′ is a block in G with vertices V ′ ⊂ V and there
is a vertex i /∈ V ′ with at least two neighbors in V ′, then
G′ is not a rigid component of G; (d) If G has at least
2n− 2 edges, then it contains a component spanning at
least 4 vertices [11, Theorem 2 and Theorem 5].
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What we have presented here is a small part of a
well-developed combinatorial and algorithmic theory of
(k, `)-sparse graphs. We refer the reader to [11] for a de-
tailed treatment of the rich properties of sparse graphs.

The density lemma

A very useful tool is the following result on the size of
dense subgraphs in G (n, c/n) due to  Luczak [13].

Proposition 4 (Density Lemma [13]). Let a and c
be real constants with a > 1 and c > a. There is a
constant t(a, c) > 0, not depending on n, such that any
subgraph of G(n, c/n) with n′ vertices inducing at least
an′ edges has n′ ≥ t(a, c)n, almost surely.

3 Proofs

In this section we prove the main result of this paper.

Theorem 1 (Size and emergence of a large rigid
component). Let c > 0 be a constant. Almost surely,
all rigid components in G (n, c/n) span 2, 3, or Ω(n)
vertices. If c > 4, then almost surely there is a rigid
component of size at least n/10.

Proof outline.

Here is the proof strategy in a nutshell. Because any
rigid component with n′ ≥ 4 vertices must be some-
what dense, the very general bound of Proposition 4
implies that for p = c/n all the rigid components are ei-
ther trivial, triangles, or spanning a constant fraction of
the vertices in G (n, c/n) (Lemma 5). We then improve
upon our bounds on the probability of rigid components
of size sn, for s ∈ (0, 1) by formalizing the observation
that such rigid components are likely to “grow” (Lemma
7) and then optimizing s (Lemma 8).

The rest of this section contains the details.

Rigid components have either constant or linear size

We start by proving that non-trivial rigid components
are all very large or triangles, almost surely.

Lemma 5. Let c > 0 be a fixed constant. Almost surely,
all rigid components in G (n, c/n) have size 2, 3, or
Ω(n).

Proof. By Proposition 3(a), any rigid component on
n′ ≥ 4 vertices spans at least 5

4n
′ edges (with equality

for n′ = 4). The lemma then follows from Proposition
4 (with a = 5

4 ) and the well-known fact that almost
surely G (n, c/n) contains a triangle [2, Theorem 4.1, p.
79]. �

For c > 4, the number of edges in G (n, c/n) implies
that it has at least one large rigid component, almost
surely.

Lemma 6. Let c > 4. Almost surely, G (n, c/n) con-
tains at least one rigid component of size Ω(n).

Proof. For any ε > 0 G (n, (4 + ε)/n) has at least 2n−
2 edges with high probability. Proposition 3(d) then
implies that almost surely G (n, (4 + ε)/n) contains at
least one rigid component with at least 4 vertices. By
Lemma 5, all of these span at least t(a, 4 + ε)n vertices.

By Proposition 3(b) the size of rigid components is
an increasing property and [2, Theorem 2.1, p. 36],
this lower bound on size holds, almost surely, for any
c > 4. �

For c > 4 the largest component is very large

We now turn to improving the lower bound on the size
of rigid components. To do this, we will use the maxi-
mality of rigid components as well as their edge density.
In what follows Bin (N, p) denotes a binomial random
variable with parameters N and p; in particular, the
number of edges induced by n′ vertices in G (n, p) has
distribution Bin

((
n′

2

)
, c/n

)
.

Lemma 7. The probability that a fixed set of k vertices
spans a rigid component in G (n, c/n) is at most

Pr
[
Bin

(
k2/2, c/n

)
≥ 2k − 3

]
·(

(1− c/n)k + k
c

n
(1− c/n)k−1

)n−k

(1)

Proof. To induce a rigid component, a set V ′ of k ver-
tices must span at least 2k−3 edges by Proposition 3(a).
By Proposition 3(c) if V ′ spans a rigid component, no
vertex outside of V ′ can have more than one neighbor
in V ′. The two terms in (1) correspond to these two
events, which are independent. �

Remark: This estimate of the probability of a set of
vertices inducing a rigid component is very weak, since it
uses only the number of edges induced by V ′ (not their
distribution) and the simplest local obstacle to maxi-
mality. Any improvement in this part of the argument
would translate into improvements in the lower bound
on the size of rigid components.

Lemma 8. For c > 4, almost surely all rigid compo-
nents span at least n/10 vertices.

Proof. With the assumptions of the lemma, by Lemma
6, G (n, c/n) almost surely has no blocks of size smaller
than tn, where t is a constant independent of n. It fol-
lows from Proposition 3(a) that G (n, c/n) almost surely
has no rigid components smaller than tn.

LetXk to be the number of rigid components of size k.
We will show that E [X4]+· · ·+E

[
Xn/10

]
= o(1), which

implies the lemma by a Markov’s inequality. As noted
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above, E [X4] + · · ·+ E [Xtn] = o(1), so we concentrate
on terms where k ∈ [tn, n/10]. By Lemma 7:

E [Xk] ≤
(
n

k

)
Pr
[
Bin

(
k2/2, c/n

)
≥ 2k − 3

]
·(

(1− c/n)k + k
c

n
(1− c/n)k−1

)n−k

(2)

Setting k = sn and letting c approach 4, we can use
a Chernoff bound [14, Theorem 4.1, p. 68] to bound
the right-hand-side of (2) by e−Θ(n) when s ∈ [t, 1/10].
This then implies that

∑n/10
k=tn E [Xk] ≤ ne−Θ(n) = o(1).

By Proposition 3(b) the size of rigid components is
an increasing property, so [2, Theorem 2.1, p. 36], this
lower bound on size holds almost surely for any c >
4. �

4 Conclusions and open problems

We considered the question of the size and emergence
of rigid components in a random graph G (n, c/n) as
c increases, and we proved that almost surely all rigid
components in G (n, c/n) are single edges, triangles or
span Ω(n) vertices. For c > 4, we proved that, almost
surely, the largest rigid components span at least n/10
vertices.

The most natural open question is whether there is a
threshold constant for rigid components in G (n, p).

Question 9 (Existence of a threshold constant).
Is there a constant cr at which a linear-sized rigid com-
ponent appears in G (n, (cr + ε)/n) almost surely, and
G (n, (cr − ε)/n) almost surely has no large rigid com-
ponents?

The other important question is about the structure
of large rigid components when they emerge.

Question 10 (Structure of large rigid components
in G (n, c/n)). Is there almost surely only one large
rigid component in G (n, c/n), and what are the precise
bounds on its size?

We have observed in computer simulations that when
linear sized rigid components are present, there is only
one, and it is much larger than n/10.
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