CCCG 2009, Vancouver, BC, August 17-19, 2009

Constant-Working-Space Algorithms for Geometric Problems

Tetsuo Asano*

Abstract

In this paper we first present an algorithm for construct-
ing the Delaunay triangulation of n given points in the
plane. It runs in O(n?) time using only constant work-
ing space (more precisely, O(logn) bits in total) with
input data on a read-only array. Then, we apply it
to construct a Voronoi diagram in O(n?) time and Eu-
clidean minimum spanning tree in O(n?) time in the
same model.

1 Introduction

Recent progress in computer systems has provided pro-
grammers with unlimited amount of working storage for
their programs. Nowadays there are plenty of space-
inefficient programs which use too much storage and
become too slow if sufficiently large memory is not avail-
able. We believe that there is high demand for space-
efficient algorithms.

In this paper we first present an algorithm for con-
structing a Delaunay triangulation for a set of points
in the plane. A triangulation of a point set is a maxi-
mal planar graph in which vertices are input points and
edges are straight line segments between points. The
Delaunay triangulation is such a triangulation that for
each triangle its circumcircle contains no other point
of the set in its interior. An O(nlogn) algorithm for
constructing Delaunay triangulation is known [4]. This
paper presents another algorithm which takes O(n?)
time but requires only constant working space, that is,
O(logn) bits in total. Furthermore, input data are kept
in a read-only array. Outputs are not stored anywhere.
Whenever we obtain an triangulation edge, we just out-
put it as a line segment. Or we could assume a write-
only array for outputs.

We can apply this algorithm to derive other space-
efficient algorithms. One direct application is an algo-
rithm for constructing the Voronoi diagram of a point
set, which is a dual of Delaunay triangulation. Another
application is an algorithm for constructing a minimum
spanning tree. It runsin O(n?) time in the same setting.

Our algorithms take more time, but when considering
the product of time and space requirements, our algo-

*School of Information
t-asanoQjaist.ac.jp

fInstitut fiir Informatik, Freie Universitit Berlin, Germany,
rote@inf.fu-berlin.de

Science, JAIST, Japan,

Giinter Rotef

rithms are an improvement. Existing algorithms for the
Delaunay triangulation and the Voronoi diagram run in
O(nlogn) time but they need O(n) working space, and
hence the time and space product is O(n?logn). For
our algorithms, the product is O(n?) x O(1) = O(n?).
Another advantage is in their simpleness. Simpleness is
also important for educational purposes.

Constant-working-space algorithms have been stud-
ied in complexity theory under a different name, “log-
space” algorithms. The authors prefer the current name
since it is more intuitive. One of the most important re-
sults among a number of results in log-space algorithms
is a selection algorithm by Munro and Raman [7] which
runs in O(n'*¢) time using working space O(1/e¢) for
any small constant € > 0. The result on st-connectivity
on graphs by Reingold [8] is also another breakthrough
in this area. See also [1, 2] for applications to image
processing.

Throughout the paper, we assume for simplicity that
the input is in general position: no two points have the
same x or y-coordinates; no three points are collinear
and no four points are cocircular; and no two point pairs
have the same distance. Standard techniques like per-
turbation can be used to treat degenerate cases.

2 Computational Model

In this section we describe our computational model.
Input data are stored in a read-only array. In our case
input data consist of n points in the plane. Although it
is not allowed to permute the array elements or modify
the content of any element, constant-time random ac-
cess to data points is possible. Further, it is assumed
that any basic arithmetic operation is done in constant
time.

A constant-working-space algorithm can use at most
some constant number of variables, each with O(logn)
bits, in addition to the read-only array for input data.
Implicit storage consumption required by recursive calls
is also considered as a part of working space. The same
computational model is also used in [3] with a number
of interesting algorithms including one for constructing
the convex hull.

3 Computing a Triangulation

The straightforward approach for constructing an arbi-
trary triangulation adds edges incrementally: we start

21st Canadian Conference on Computational Geometry, 2009

with a graph having n isolated vertices (points). For
every pair of points we determine whether the line seg-
ment between the two points does not properly intersect
any existing edge (line segment), and if it does not then
we add the edge to the graph.

In this paper we are interested in algorithms using
only constant working space with input points on a read-
only array. Since we have no space for marking existing
edges, it is impossible to implement the naive algorithm
described above in the constant working space environ-
ment. Fortunately, we can design a quadratic-time al-
gorithm using constant working space.

Quadratic-Time Algorithm for Triangulation

There are a number of different algorithms for comput-
ing the convex hull of a point set in the plane. An
algorithm known as a gift-wrapping or Jarvis’ march
successively finds convex hull edges in a way of wrap-
ping a gift. For a set of n points, it takes O(n) time
to discover the next convex hull edge. The total run-
ning time is output-sensitive in the sense that it runs in
O(nh) time when the number of vertices of the convex
hull is h. An advantage is that it is originally a con-
stant working space algorithm. Using this algorithm,
we can design a constant working space algorithm for
constructing a triangulation.

Our algorithm scans points from left to right. Since
we cannot store sorted results, we find those points
one by one by finding the next point with larger z-
coordinate. Then, at each point p; we compute the con-
vex hull for a set of point lying to its left: We discover
successive hull edges by Jarvis’ march, starting from
the rightmost point p;_; in two directions. Whenever
we find a new convex hull edge, we determine whether
the edge is visible from p; or not, using its preceding
convex hull edge. If it is visible, then we draw an edge
from p; to the point. The time for drawing k new edges
is O(kn). Therefore, the time we need for the triangu-
lation is bounded by the number of triangulation edges
times the number of points, which is O(n?). We also
need time for scanning the points in order. The total
time we need is thus O(n?).

4 Quadratic-Time Algorithm for Delaunay Triangu-
lation

Here are some well-known basic observations.

Observation 1 Given a set S of points in the plane,
a line segment connecting two points p; and p; in S is
a Delaunay edge if and only if there exists some point
pr € S such that the circle defined by them does not
contain any other point of S.

Observation 2 If p; is closest to p;, then (pi,p;) is a
Delaunay edge.

Figure 1: Triangulation of a point set using a plane
sweep. (a) input points and i-th point in the sorted
order, (b) computing the convex hull of points lying to
the left of p; and then construct edges to the hull points.

Observation 3 FEvery edge of the convexr hull of S is
also Delaunay edge.

These three observations lead to the following algo-
rithm for constructing Delaunay triangulation. The al-
gorithm scans each point p; of S and constructs all the
Delaunay edges incident to p;. By Observation 2 we can
start from a point p; nearest to p;. Then, we find the
next Delaunay edge incident to p; in clockwise order,
which is found by the following procedure using Obser-
vations 1 and 3.

Algorithm 1 for finding the next edge from (u,v) in
clockwise order in the Delaunay triangulation
(graph) defined by a set S of points. See Figure 2
function ClockwiseNext(u,v)
first :== TRUE;
for each point w € S\{u,v} do
if (u,v,w) is clockwise then
if first or w lies in the circumcircle of u, v, wp
then
Wo ‘= W,
first := FALSE;
if first then
// (u,v) is a hull edge;
// find the adjacent hull edge (w,wp):
for each point w € S\{u, v} do
if first or (u,wp,w) is counter-clockwise then
Wo ‘= W,
first := FALSE;

return (u,wp);

Lemma 4 The procedure ClockwiseNext(u,v) correctly
finds the next edge incident to u in clockwise order in
the Delaunay triangulation (graph) defined by a set S of
points.

Figure 3 illustrates a basic operation in our algorithm,
which is successive application of the procedure Clock-
wiseNext() (Algorithm 1).

CCCG 2009, Vancouver, BC, August 17-19, 2009

Figure 2: Clockwise next Delaunay edges, one for inter-
nal edge and the other convex hull edge.

An important observation here is that the algorithm
calls the procedure ClockwiseNext() at most O(n) times.
It is because the total number of calls is bounded by the
total number of Delaunay edges, which is O(n). Since
the procedure is done in O(n) time, the total time com-
plexity is bounded by O(n?).

Figure 3: Go around an internal point p; starting from
its closest point p; (left) and around an extreme point
(right). Delaunay edges and Voronoi edges are drawn
by dotted and solid line, respectively.

Now, the whole algorithm looks like as follows:

Algorithm 2: Constructing a Delaunay triangula-
tion in quadratic time.

Quadratic-Time Algorithm for Constructing
Delaunay Triangulation
Input: A set S of n points, {p1,...,Pn}-
Output: Delaunay edges.
for each point p; € S do
Find a point p; € S that is nearest to p;.
Report the edge (pi,p;) if i < j.
Pr = Dj.
repeat

pr =ClockwiseNext(p;, p).

if i < k then Report the edge (p;, pr)-
until p, = p;

By reporting edges only if ¢ < k£ we ensure that each
edge is reported only once: when it is visited from the
endpoint with the smaller number.

Theorem 5 Given a set of n points in the plane, Al-
gorithm 1 reports every Delaunay edge exactly once in
O(n?) time using constant working space.

5 Voronoi Diagrams

It is rather easy to extend our constant-working-space
algorithm to one for constructing Vodonoi diagram of a
point set. Given a set S of points in the plane, for each
point uw we can go around the point w while visiting
all Delaunay edges in clockwise order, and hence visit-
ing Delaunay triangles incident to w in clockwise order.
Every finite Voronoi edge is defined by two adjacent De-
launay triangles. Thus, those edges can be reported by
slightly modifying Algorithm 2. It is also easy to adapt
Algorithm 2 to report infinite Voronoi edges, which are
dual to convex-hull edges, as well.

6 Minimum Spanning Tree

As an application of the algorithm for constructing
the Delaunay triangulation, consider a problem of con-
structing the Euclidean minimum spanning tree of a
given point set. It is a well-known property that it is
a subgraph of the Delaunay triangulation. Another im-
portant property of the minimum spanning tree is that
a Delaunay edge e = (u,v) is not contained in the min-
imum spanning tree if and only if the Delaunay graph
contains a path between v and v consisting of Delaunay
edges of lengths < d(u,v). As before, we enumerate all
Delaunay edges in O(n?) time in total. Whenever we
have a Delaunay edge e = (u,v), we check whether it is
also an edge in the minimum spanning tree by checking
the existence of a path between u and v consisting of
Delaunay edges of lengths < d(u,v). Suppose e = (u,v)
is not an edge in the minimum spanning tree. Then,
if we add the edge (u,v) to the subgraph of the De-
launay graph which consists of all Delaunay edges of
lengths < d(u,v), we have a cycle, which forms a face.
Thus, we can check the existence of the above-described
path by successively applying the two functions Clock-
wiseNext(u,v) and CounterClockwisewNext(u,v) to fol-
low the boundary of a face defined by the cycle.

The algorithm CheckMS TreeEdge(p, q) visits a subset
of edges (u,v) of the Delaunay triangulation; each visit
requires a call to ClockwiseNezt(u,v), which takes O(n)
time. Thus in total, the running time is O(n?) for test-
ing one Delaunay edge (p,q). We repeat this test for
each of the O(n) Delaunay edges. Thus, the time for
outputting all MST edges is O(n?).

Theorem 6 Given a set of n points in the plane, we
can compute its Euclidean minimum spanning tree in
O(n?) time using only constant working space.

We could use a constant-working-space algorithm by
Reingold [8] which determines connectivity of two arbi-
trary vertices in a given graph in polynomial time. It
would be much slower and more complicated. Our al-
gorithm is faster since it can use the planar structure of
the Delaunay triangulation

21st Canadian Conference on Computational Geometry, 2009

Algorithm 3: Checking for an MST edge

CheckMS TreeEdge(p, q);
Input: A set S ={p1,...,pn} of n points, a
Delaunay edge (p, q).

Output: TRUE if (p, q) is an edge of the minimum
spanning tree.

// walk around the boundary of the subgraph of

the Delaunay triangulation consisting of edges

shorter than (p, q), starting at p in the face

containing the edge (p, q);

u,v :=p,q; // uis the current vertex and (u,v) is

the current edge;

repeat

u,w := ClockwiseNext(u,v);

if lu — wl] < [lp — gll then

u,v = w,u; // proceed to w;
else

U,V = U, W;
// skip edge (u,w) and look for next
clockwise edge;

until (u,0) = (p,q) or u=1q;
if u=q then
return FALSE;
// The walk has reached the other endpoint g;
thus p and ¢ are connected in the subgraph;
else
return TRUE;
// The walk has surrounded the component
containing p and reached the starting edge
without reaching the other endpoint gq. Thus, p
| and ¢ are in different components;

7 Conclusions and Future Work

In this paper we have presented constant-working space
algorithms for three geometric problems. The last one
for constructing the Euclidean minimum spanning tree
is based on the algorithm for constructing the Delaunay
triangulation of a point set. It takes O(n?) time. Ob-
vious future works are to improve the time complexity
or to prove a lower bound and to extend the result to
higher dimensions. So far, there are no techniques for
proving lower bounds with constant working space. For
the problem of approximating the median with (small)
constant storage, Lenz [5] and [6, Part II] have given
lower bounds in a more restricted data access model.

Our algorithms extend to Delaunay triangulations in
three dimensions, allowing to report all Delaunay edges,
triangles, or tetrahedra, as well as all Voronoi vertices,
edges, or faces, in polynomial time. It is open whether
this can be used to compute the MST, other than by
using the powerful technique of Reingold [8].

Acknowledgments

The work of T.A. was partially supported by the Min-
istry of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research on Priority Areas and Sci-
entific Research (B).

References

[1] T. Asano, “Constant-Working-Space Algorithms: How
Fast Can We Solve Problems without Using Any Extra
Array?,” Invited talk at ISAAC 2008, p.1, Dec. 2008.

[2] T. Asano, “Constant-Working-Space Algorithms for
Image Processing,” Monograph: “ETVCO08: Emerging
Trends and Challenges in Visual Computing,” ETVC
2008: pp.268-283, edited by Frank Nielsen, 2009.

[3] T. M. Chan, E. Y. Chen, “Multi-Pass Geometric Al-
gorithms. Discrete & Computational Geometry 37(1),
pp.79-102, 2007.

[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars,
“Computational Geometry: Algorithms and Applica-
tions,” Springer-Verlag, 2008.

[5] T. Lenz, Deterministic splitter finding in a stream with
constant storage and guarantees. 17th International
Symposium on Algorithms and Computation, Lecture
Notes in Computer Science, Vol. 4317, Kolkata, India,
December 2006, Springer-Verlag, pp. 26-35.

[6] T. Lenz, Simple reconstruction of non-simple curves
and approximating the median in streams with constant
storage, Ph.D. dissertation, Freie Universitit Berlin,
2008.

[7] J. I. Munro and V. Raman, “Selection from read-only
memory and sorting with minimum data movement,”
Theoretical Computer Science 165, 311-323, 1996.

[8] O. Reingold, Undirected connectivity in log-space, J.
ACM 55, (2008), Article #17, 24 pp.

[9] M. I. Shamos and D. Hoey, Closest-point problems,
Proc. 16th Ann. IEEE Sympos. Found. Comput. Sci.
(1975), pp. 151-162.

