
CCCG 2009, Vancouver, BC, August 17–19, 2009

Computing Fréchet Distance with Speed Limits∗

A. Maheshwari, J.-R. Sack, and K. Shahbaz

Abstract

In this paper, we study a problem on computing the
Fréchet distance between two polygonal curves and pro-
vide efficient solutions for solving it. In the classical
Fréchet distance, point objects move arbitrarily fast on
the polygonal curves. Here, we consider the problem in-
stance where the speed per segment is a constant within
a specified range. We first describe a naive algorithm
which solves the decision problem in O(n3) time. Then,
we develop a faster algorithm which is based on the
naive one, but exhibits a running time of O(n2 log n).
Finally, we show that the exact Fréchet distance for this
problem instance can be computed in O(n2 log2 n).

1 Introduction

Alt and Godau [1] consider the Fréchet distance to be
one of the most fundamental measures for determin-
ing the similarity between two polygonal curves. The
Fréchet distance between two curves is often referred to
as “dog-leash distance” because it can be interpreted
as the minimum length leash required for a person to
walk a dog, if the person and the dog, each travel from
a starting point to an ending point of his/its curve, re-
spectively, without ever letting go of the leash or back-
tracking. Two problem instances naturally arise: de-
cision and optimization. In the decision problem, one
wants to decide whether two polygonal curves U and
V are within ε Fréchet-distance from each other, i.e., if
a leash of length ε suffices. In the optimization prob-
lem, one wants to determine the minimum such ε. In
[1], a quadratic-time algorithm for the decision problem
was proposed, where n is the number of segments on
the curves. Furthermore, they solve the corresponding
optimization problem in O(n2 log n) time.

In the above problem, the speeds of motion used on
the two polygonal curves is unbounded. Motivated by
the practical importance of similarity measures, we here
consider a problem variant in which motion speeds are
bounded, both from below and from above. I.e., there is
a speed range, minimum and maximum speed, assigned
to each of the segments of the two polygonal curves.
We say that a point object traverses a curve with per-
missible speed, if it traverses the polygonal curve from

∗School of Computer Sciences, Carleton University, Ottawa.
Research supported by NSERC and SUN Microsystems.

start to end so that the speed used on each segment falls
within the permissible range.

The decision version of Fréchet problem with speed
limits is formulated as follows: Let U and V be two
polygonal curves with minimum and maximum permis-
sible speeds assigned to each segment of U and V . (For-
mally, U = {U0, U1, ..., Uu} and V = {V0, V1, ..., Vv},
and Mini and Maxi are the speed limits on each seg-
ment Ui, Min′j and Max′j are the speed limits on each
segment Vj) For a given ε ≥ 0, is there an assignment
of speeds so that two point objects can traverse U and
V with permissible speed and, throughout the entire
traversal, are at a distance of at most ε from each other.
This problem may have practical usage in GIS, when the
speed of moving objects is considered in addition to the
geometric structure of the trajectories.

In Section 2, we explain a naive algorithm to solve the
decision problem. Then, in Section 3, we describe how
we can improve our naive algorithm to obtain a faster
running time.

2 Naive Decision Algorithm

Our algorithm is based on the construction of the free
space diagram used for the traditional Fréchet decision
problem introduced by [1], which we discuss next.

Let U and V be two polygonal curves in plane and
U(s) and V (t), s, t ∈ [0, 1], be affine mapping represent-
ing them. Fε, is the set of the pairs of points (s,t), for
which the Euclidean distance between U(s) and V (t) is
at most ε, i.e., Fε = {(s, t) ∈ [0, 1]2 | d(U(s), V (t)) ≤ ε}.
Figure 1a depicts two polygonal paths U and V . Fε, is
best represented (see Figure 1b) as a “free space dia-
gram”, which is the combination of the free space cells
for all pairs of segments from U and V , respectively.
The colour “white” represents Fε and grey indicates its
complement in [0, 1]2. U has been affinely mapped to
the vertical axis of the free space diagram and V to the
horizontal axis. One such cell is illustrated in Figure
1c. The cell values are determined to identify passages
between neighboring cells. LFi,j refers to the left line
segment and BFi,j refers to the bottom line segment that
bound Fε(i, j). These values are computed by finding
intersection of a square and an ellipse for each cell. In
[1], it was observed that any path from the start point
to the target point in the free space diagram that is
monotone in both directions, corresponds to traversals

21st Canadian Conference on Computational Geometry, 2009

of U and V , respectively, which are at distance at most
ε from each other. (Figure 1b shows such a monotone
curve inside the free space diagram.) Based on this, Alt
and Godau [1] derived their quadratic time algorithm
for the decision problem.

LFi,j

BF
i,j

Fε(i, j)

BF
i+1,j

LFi,j+1

U

V

(c)(b)

Target Point

Start Point

t

t
s

s

Curve U : solid

Curve V : dashed

ε is :

(a)

Figure 1: Illustration of the free space diagram. It is
drawn using a java applet developed by S. Pelletier.

In our algorithm, as a pre-processing step, all cells
in the free space diagram are computed for a given con-
stant ε ≥ 0. Let Ou and Ov be the point objects moving
on U and V , respectively. In order to compute the min-
imum slope which is permissible in a cell(i,j), Ou must
move with Mini speed and Ov with Max′j speed. To
compute the maximum slope, permissible in a cell(i,j),
Ou must move with Maxi and Ov with Min′j . An s-
monotone path is a path monotone in both coordinates
from the start point to any point in the free space di-
agram which consists of segments, each of which have
permissible slope at the cell passed. Since Ou and Ov
move at a constant speed on every segment of their re-
spective polygonal paths, the s-monotone path consists
of only straight lines.

It may be tempting to perform a linear transform to
each cell so that the s-monotonicity is transformed to x-
y monotonicity. But when this is applied to all cells si-
multaneously in the free space diagram, the transformed
cells are not a tiling of [0, 1]2 since the speed limits (and
hence the slopes) are not the same for all cells.

From now, when we say a point p is reachable, that
implies that there is an s-monotone path from the start
point to that point in the diagram. We call an interval
reachable if all of its points are reachable.

Let the entry side of a cell(i,j) be LFi,j ∪ BFi,j (Fig-
ure 1c). Similarly, let the exit side of a cell(i,j) be
LFi,j+1∪BFi+1,j . The minLine and maxLine of a cell(i,j)

are straight lines from the entry side to the exit side
of that cell with minimum and maximum permissible
slope of a cell(i,j), respectively. Since neither Ou nor
Ov are allowed to backtrack, the permissible minimum
and maximum slopes are non-negative.

Let LSi,j denote a line segment on LFi,j that includes all
points on LFi,j which are reachable from the start point
of the diagram. Likewise, let BSi,j denote a line segment
on BFi,j that includes all reachable points on BFi,j .

We now state our naive algorithm to the decision
problem. Cells are processed one by one, row-wise, from
the first cell to the last cell in the diagram, to com-
pute LS and BS on boundaries of cells. To construct
LSi,j+1 and BSi+1,j from LSi,j and BSi,j , the left end-points
of LSi,j and BSi,j are projected with maxLine; the right
end-points are projected with minLine to the exit side
of a cell(i,j). This projection may create an interval on
the exit side of a cell which is unreachable from the start
point. We call such an interval a block. We denote a new
block formed on the exit side of a cell(i,j) by Ki,j . The
left (right) end-point of a block on LFi,j , has the largest
(smallest) y-coordinate among all points on that block.
Analogously, the left (right) point of a block on BFi,j , has
the smallest (largest) y-coordinate among all points on
that block. Assume that two blocks K1 and K2 lie on
the entry side of a cell. We say that K1 lies to the left of
K2, if the left end-point of K1 has smaller x-coordinate
or smaller y-coordinate than the left end-point of K2.

In the naive algorithm, all blocks that lie on the en-
try side of cell(i,j) are projected, one by one, to the exit
side of that cell. Since points on a block are not reach-
able, the left end-point of each block is projected with
minLine and the right end-point, is projected with max-
Line to the exit side of cell(i,j). If these two projection
lines cross each other inside cell(i,j), we say the block
vanishes, otherwise we say it survives. We call a surviv-
ing block, a grey block, if its projection lies completely
in the grey area of a cell (see Figure 2a). As a result
of projecting blocks, LS and BS of the cells may be
fragmented into intervals, some of which are reachable,
some are unreachable (see Figure 2b).

During the processing of cells, blocks which vanish
and those whose projections entirely lie in grey area of
the diagram, are discarded. Thus, only the surviving
blocks are maintained. Finally, at the last cell, if pro-
jection of LSu,v or BSu,v, includes the target point, and
projection of no block covers the target point, then the
answer to the decision problem is YES, otherwise, the
answer is NO. In the full version of this paper we have
established that there exist an s-monotone path from
start to target in the free space diagram if and only if
the output of the naive algorithm is YES. Also, we have
shown the following:

Theorem 1 The naive algorithm solves the decision

CCCG 2009, Vancouver, BC, August 17–19, 2009

BS
i,j

blocks

LS
i,j

blocks

New block Ki,j

K1

K2

K3

(a) (b)

Figure 2: (a) Block K1 survives after projection, K2

becomes a grey block and K3 vanishes (b) A new block
is formed on the top of a cell.

problem of Fréchet distance with speed limits correctly
in Θ(n3) time.

3 An O(n2 log n) Time Decision Algorithm

In this section, we improve upon the naive algorithm.
Rather than projecting all blocks which lie on the entry
side of a cell(i,j), we only project the leftmost, the right-
most, and the smallest block. Obviously, this means
that some information is not available during the exe-
cution of the algorithm. However, we store blocks in a
data structure, called block tree. We show that we can
delay the propagation of the blocks until the blocks are
required.

Let s be a line segment on the left (resp., bottom) side
of a cell(i,j) and s′ be the result of projecting the left
end-point of s with minLine, and the right end-point of
s with maxLine, to the exit side of that cell. Let the
left (resp., bottom) shrink factor of cell(i,j) be the ratio
|s′|
|s| .

First, we formally define the block tree and its op-
erations. Then, we discuss how the block tree is used
to propagate reachability information through one cell.
Finally, we describe how searching is done at the last
cell.

3.1 Block Tree

The block tree is a standard balanced binary search tree
built on the relative location of blocks located on the left
or bottom entry side of a cell. The notation TLi,j and TBi,j
are used to denote the left and the bottom block tree of
cell(i,j), respectively. For convenience, Ti,j refers to TLi,j
and TBi,j . A node in Ti,j stores a representative block
which appears on the exit side of a cell that is encoun-
tered prior to processing the cell(i,j). Because not all
blocks are projected, the left and right end-points of
the blocks stored at that node are not known. However,
our algorithm ensures that all the stored blocks have

neither vanished nor have been discarded, and will have
a non-empty projection on the entry side of cell(i,j).
During processing, edges of the block tree are labelled
with the shrink factors, called β, of the processed cells.
These factors are used to compute the exact length of
a block stored in a node. A node z in the block tree,
corresponding to a block K, stores the following infor-
mation
1: the left end-point coordinates of K
2: the last cell that the left end-point of K was com-

puted
3: the length of K
4: γ, is a real number which is used in computation of

the length of the blocks
5: a pointer to the smallest block in the subtree of z.

Next, we state basic operations on the block tree T .
ExactLocation(T, z,cell(i,j)), finds the exact loca-

tion of the block stored at the node z of T at the entry
side of cell(i,j). The corresponding block stored at that
node, say it is K, is projected to the cell(i,j), starting
from the cell stored at Field 2 of z. Meanwhile, Fields
1 to 4 of z are updated. Search(T, [x1, x2]), this pro-
cedure returns all blocks stored in T , in the interval
[x1, x2]. The search starts at the root of T . Branching
decision at each node z of T is made using the corre-
sponding block stored at that node. First, the exact
location and length of that block at the current cell
is computed by calling ExactLocation function. Based
on the actual location of this block relative to [x1, x2],
the search continues down the tree and all blocks, lying
in the interval [x1, x2] are reported. Insert(T,Ki,j),
inserts a new node z into T to store the new block
Ki,j . After insertion of z, rotations, similar to those
for balanced binary search tree, are performed to keep
the block tree balanced and the shrink factor on edges
are updated accordingly.

NextSmallestBlock(T), returns the second small-
est block stored in T . RemoveSmallBlocks(T, l),
eliminates all blocks stored in T of length smaller than
a real number l. To find those blocks, l is compared
to the length of the smallest block which the root
of the tree points to. If the length of the smallest
block stored in a node is less than l, that node is re-
moved from the tree. By calling the NextSmallest-
Block function, the next smallest block in T , is found
and its length is compared to l. Deletion is contin-
ued until all blocks, smaller than l, are removed from
T . RemoveGreyBlocks(T, [x1, x2]), this procedure
removes all blocks stored in T , in the interval [x1, x2].
Finding those blocks is similar to the Search procedure.
Length(T, z), computes the exact length of a block
stored in a node z of T . The block tree is traversed
from the root to the node z. The β values on each edge
along the path to z are multiplied with γ stored at z
and with the length of its block. This determines the

21st Canadian Conference on Computational Geometry, 2009

actual length of the block stored in the node.
Split(T), splits a block tree T into two new block

trees T1 and T2. Either T1 or T2, includes the root of T ;
say it is T1. The β-values on all edges of T , along the
path from the root of T to the root of T2 are multiplied.
That value is then multiplied with β’s on the left and
right edge of T2’s root. Merge(T1, T2), this procedure
receives two block trees T1 and T2 as input, one is to
the left of the other. It merges them and updates the
pointers to the smallest intervals to form a new block
tree. Shrink(T, µ), receives a shrink factor µ and a
block tree T and multiplies all β values on the left and
the right edge of the root of that tree by µ. Also, γ
of the root changes to γ = γ × µ. Copy(T1), receives
a block tree T1 and returns a copy. It is used to copy
blocks, stored in T1 on the entry side of a cell to another
block tree T2 on the exit side of the cell. Through this
operation, only pointers to the block tree T1 are copies
to T2. One of the main observations which we have
is that all these operations preserve the lengths of the
blocks on the entry side of a cell.

3.2 Propagating reachability through a cell

Let MinLengthToSurvivei,j be the minimum length that
an interval on the entry side of a cell(i,j) must have to
survive after projection. To improve the running time of
the naive algorithm, we need to propagate reachability
information efficiently for which we use the block tree.
TLi,j and TBi,j store blocks located on the entry side of
a cell(i,j) and the following steps A to G are executed.
Steps A to D are performed on the entry side of cell(i,j)
while steps E to G are performed on its exit side.
(A) Procedure RemoveSmallBlocks is called with Ti,j
and l = MinLengthToSurvivei,j as input. Blocks
whose lengths are insufficient to survive are removed
from Ti,j .
(B) Procedure RemoveGreyBlocks is called with left and
bottom block trees to remove all blocks whose projec-
tions lie completely in the grey area of the current cell.
As a consequence of removing such blocks, one of the
trees may be split into two trees.
(C) Procedure Shrink is called twice: on the left block
tree with the cell’s left shrink factor and on the bottom
block tree with the bottom shrink factor.
(D) The leftmost, rightmost and smallest blocks in TLi,j
and TBi,j are found and are projected to the exit side
of cell(i,j). Analogously to Step B, one of the left or
bottom block trees may be split.
(E) The Copy Procedure copies TLi,j and TBi,j to con-
struct TLi+1,j and TBi,j+1.
(F) If a new block appears on the exit side of a cell(i,j),
then a new node is inserted into the block tree storing
that block.
(G) Execute the Merge Procedure, if required, to merge
two block trees on the right or the top side of a cell(i,j).

3.3 Searching at the Last Cell

By transferring s-monotone paths from the entry side to
the exit side of each cell in row-wise order, we reach the
last cell. There, our algorithm makes the final decision
concerning the existence of an s-monotone path in the
diagram. When the algorithm reaches cell(u,v), LSu,v =
[y0, y1] and BSu,v = [x0, x1] and the block trees TLu,v and
TBu,v are known. These have information of blocks on
the entry side of cell(u,v). We first check the inclusion
of the target point in the projection of BSu,v or LSu,v.
Next, we back project the target point to the entry side
of the cell(u,v) and let the back projection be (xs, ys)
(see Figure 3). After that, block tree TBu,v is searched
to find blocks lying in the interval [x0, xs]. Then, the
actual length of these blocks are computed by calling
the length function. Then, those lengths are summed
up to obtain the total length of blocks in [x0, xs]. This
is compared to the length of the line segment x0xs. If
it is smaller than the length of x0xs, then answer to
the decision problem is YES; otherwise, the analogous
computation is performed for blocks lying in the interval
[ys, y1].

Target Point

minLine

maxLine
xs

y0

y1

ys

x0 x1

Figure 3: Illustration of the decision procedure at the
last cell.

We have shown that propagating reachability through
one cell takes O(log n) amortized time. Further-
more, searching at the last cell, can be shown to take
O(n2 log n) time, in the worst-case. The correctness and
complexity of our algorithm is thus established.

Theorem 2 Our faster algorithm takes O(n2 log n)
time and uses O(n2) space to solve the decision version
of the Fréchet distance problem with speed limits.

By using parametric search, as in [1], the exact
Fréchet distance with speed limits can be computed in
O(n2 log2 n) time.

References

[1] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. Com-
put. Geom. Appl., 5:75-91, 1995.

