
CCCG 2009, Vancouver, BC, August 17–19, 2009

Approximating Maximum Flow in Polygonal Domains using Spanners
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Abstract

We study a maximum flow problem in a polygonal
domain P : Determine the maximum number of dis-
joint “thick” paths (of specified width w) through
P from a source edge to a sink edge of P .

We show that Euclidean spanners offer a means
of computing approximately optimal solutions. For
a polygonal domain with n vertices and h point
holes, we give a 1/2-approximation algorithm that
runs in time O(n + h log(nh)); this is to be con-
trasted with the known exact methods that take
time O(nh+n log n). Further, we show experimen-
tally that using a spanner (e.g., Delaunay graph)
yields approximation ratios very close to one.

1 Introduction

We consider the problem of routing multiple disjoint
“thick” paths through a polygonal domain in the
plane. The problem arises in various application do-
mains, including VLSI wiring, robotics, sensor net-
works, and air traffic management (ATM). Our mo-
tivation comes from an ATM application in which
the goal is to compute the “capacity” of an airspace:
find the maximum number of disjoint “air lanes”
avoiding hazardous weather and other “constraints”
(obstacles) within an airspace of interest (e.g., a
“flow-constrained area”) [7, 8]. The goal is to pro-
vide computer-automated decision support tools to
perform “capacity estimation” on an airspace to de-
termine its maximum throughput, which measures
how constrained the airspace is.
Problem Formulation. The input to our prob-
lem is a polygonal domain P , consisting of an outer
polygon and a set H of h holes. Let n denote the
total number of vertices of P . In this paper we
focus on the special case in which H consists of a
set of point holes; thus, the outer boundary of P
is a simple polygon with n − h vertices. This is
the special case that arises in our ATM application,
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since the weather data is typically given as a set of
points (pixels) at which there is hazardous weather
predicted,

Two edges, Γs and Γt of ∂P are designated as the
source and the sink. A w-thick path, or lane of width
w, is the Minkowski sum of a usual (“thin”) source-
to-sink path and a disk of radius w/2 centered at
the origin. (Refer to [10] for more definitions and
background.) We consider the parameter w to be
fixed and refer to a w-thick path simply as a thick
path. Our goal is to compute (approximately) the
maximum number of pariwise-disjoint thick paths
within P from Γs to Γt.

Related Work. Algorithms for computing
maximum flows and minimum cuts in the contin-
uum (2D geometric domains) were first studied
in [9]. Recent results have examined the problems
of minimizing path lengths for multiple thick paths
(minimum-cost flow) [10] and routing thick paths
in dynamic environments (e.g., moving weather sys-
tems) [1]. See also [11]. The application of max-flow
techniques in ATM is addressed, e.g., in [7, 8].

Summary of Results. Using the propagation
algorithm of [9], appropriately modified to handle
discrete thick paths (versus continuous flow fields),
our optimization problem can be solved exactly in
time O(nh+n log n) (see [1, Thm. 2.1]), for a polyg-
onal domain with h polygonal holes, having a total
of n vertices. In this paper we propose a simple
1/2-approximation algorithm for the case that P
is a polygonal domain with point holes. Our al-
gorithm searches a Euclidean spanner graph for an
approximate min-cut, in time O(n+h log(nh)). We
show that this results in an approximation for the
problem of maximizing the number of disjoint thick
paths. We also conduct experiments, using the De-
launay graph as spanner, to validate the effective-
ness of the approximation in practice on both ran-
domly generated data and actual weather data.
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2 An Approximation Bound

Let B (resp., T ) be that portion of ∂P counterclock-
wise between Γs and Γt (resp., between Γt and Γs).
We define G = (V,E) where V = H ∪ {T} ∪ {B},
E = {(i, j)|i, j ∈ V, i 6= j}. The weight of edge (i, j)
is c(i, j) = bd(i, j)/wc, where d(i, j) is the (mini-
mum) Euclidean distance between i and j, and w is
the path width (thickness). This graph G is called
the thresholded critical graph. Let GH be the sub-
graph of G induced by nodes H. Finally, we let GεH
denote the subgraph of GH whose edge set consists
of the union of the set of Delaunay edges of H and
the edges of a Euclidean (1+ε)-spanner of H. (Edge
weights remain as in G.)

Lemma 1 For ε ≤ 0.5, GεH is a 2-spanner for GH .

Proof. It suffices to show that for any edge (u, v)
in GH , there is a path from u to v in GεH of length
at most 2 · c(u, v). There are two cases to consider,

Case 1: c(u, v) = bd(u, v)/wc = 0. Since GεH in-
cludes Delaunay edges, we know from [3] and [5]
that there exists a path π1 in GεH with vertices
u = v1, v2, . . . , vk = v such that ∀i, d(vi, vi+1) ≤
d(u, v). Since c(u, v) = 0 implies that d(u, v) < w,
we have that ∀i, c(vi, vi+1) = 0, so the path π1 has
zero length in GεH and the claimed stretch factor
automatically holds.

Case 2: c(u, v) > 0. Since GεH contains an Eu-
clidean (1+ε)-spanner, there exists a path π2 in GεH
such that

∑k−1
i=1 d(vi, vi+1) ≤ (1 + ε)d(u, v). Thus,

the stretch factor of GεH is at most∑k−1
i=1 c(vi, vi+1)
c(u, v)

=
∑k−1
i=1 bd(vi, vi+1)/wc
bd(u, v)/wc

≤
b
∑k−1
i=1 d(vi, vi+1)/wc
bd(u, v)/wc

≤ b(1 + ε)d(u, v)/wc
bd(u, v)/wc

.

We show in the appendix (Proposition 3) that if
f(x) = b(1+ε)xc

bxc and ε ≤ 0.5, then f(x) ≤ 2, for
x > 0. �

Theorem 2 The maximum number of disjoint w-
thick paths in a polygonal domain with n vertices
and h point holes can be 1

2 -approximated in time
O(n+ h log(nh))

Proof. GεH is constructed in time O(h log h), the
time needed to build the Delaunay graph or a (1 +

ε)-spanner (with ε = 0.5 and O(h) edges) for h
points. We then construct a graph Gε from GεH
by adding nodes for B and T , and linking these
nodes to each point of H. We compute the distance
from each point of H to the polygonal chains B and
T in time O(log n) per point of H (after spending
time O(n) to construct the Voronoi diagrams, and a
corresponding point location data structure, of the
simple chains B, T [4]). This augmented graph Gε

has O(h) edges and is a 2-spanner for the critical
graph G.

By the continuous max-flow min-cut theorem in
[1, 9, 12], we know that the maximum number,
OPT , of thick paths from source to sink is equal
to the length, |πG|, of a shortest path from B to
T in G. Since Gε is a 2-spanner for G, we know
that the length, |πGε |, of a shortest B-to-T path in
Gε is at most 2|πG|: OPT ≤ |πGε | ≤ 2 · OPT , i.e.,
(1/2)·OPT ≤ (1/2)|πGε | ≤ OPT . Thus, (1/2)|πGε |
is a 1

2 -approximation to the maximum number of
source-to-sink thick paths.

Our algorithm takes time O(h log h) to build GεH ,
O(n + h log n) to build Gε from GεH , and another
O(h log h) to search for a shortest path in Gε. Al-
together, the time bound is O(n+ h log(nh)). �

3 Experiments

We did experiments based on computing a spe-
cific spanner – the Delaunay graph of the points
H. The Delaunay graph is a Euclidean spanner,
with stretch factor known to be between 1.581
(> π/2 [2]) and 4π

3
√

3
≤ 2.42 [6]. Theorem 2 tells

us that if we use a spanner with stretch factor at
most 1.5 (ε = 0.5), then our approach gives a 1

2 -
approximation. Since the Delaunay graph does not
have the required property, we do not have a the-
oretical guarantee that the Delaunay-based results
give a 1

2 -aproximation; however, we will see that,
in practice, the Delaunay performs very well. In
the experiments here, we report only our experience
with the Delaunay spanner; further experiments are
underway with other spanners.

We use a unit square box as the outer boundary of
the polygonal domain P , and use two types of input
data for the point holes H: (1) uniformly generated
points, and (2) real weather data, scaled to the unit
square. For both sets of input data, we examine
the relationship between the stretch factor (ratio
|πGε |/|πG|) as a function of the “average density”
of the point set H. We define the average density
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of the points H to be the average edge length in
the nearest neighbor graph of H; the smaller this
average edge length is, the denser the point set is.

In the experiments with random point sets, we
vary the number, h, of points and the lane width,
w.

Figure 1: Average and maximum stretch factor
(SF) and length of min-cut (MC) as a function of
lane width w for random points.

Figure 2: Average and maximum stretch factor
(SF) and length of min-cut (MC) as a function of
the number of random points.

For the experiments with varying lane width w,
we fix the number, h = 500, of random points and
vary w from 0 to 0.4. For each w, we generated 100
random instances and compiled simple statistics –
the average and the maximum stretch factor. Fig-
ure 1 shows that the stretch factor is usually very
close to 1. Even the maximum stretch factor (over
all 100 instances) is low when the min-cut length is
large. For example, if the min-cut length is greater
than 20, then the maximum stretch factor is always
less than 1.1. This means that the difference be-

tween exact min-cut length and our approximation
is less than 2 even in the worst instance.

For the experiments with varying number h of
points, we fix the width, w = 0.01, and vary h from
0 to 1000 in increments of 10. For each h, we gen-
erated 100 random instances and recorded the av-
erage and maximum stretch factor. Figure 2 shows
that stretch factor is close to 1 in most cases. The
stretch factor is close to 1 even when w is relatively
small (i.e., the min-cut is large).

h min-cut avg dist stretch factor
Set1 576 179 0.0039 1.0056
Set2 502 182 0.0039 1.0110
Set3 430 184 0.0048 1.0163
Set4 752 177 0.0038 1.0113
Set5 820 180 0.0028 1.0000

Table 1: Results for real weather data with w =
0.005. Here h is the number of point obstacles
and “avg dist” is the average nearest neighbor edge
length.

Table 1 shows the stretch factor data for real
weather data. Since real weather tends to have clus-
ters of weather points (pixels), the average nearest
neighbor distance is much smaller than for random
point sets; accordingly, we set the lane width to be
very small, w = 0.005. (For w = 0.05, we found
that the stretch factor is always 1.) The results
show that the stretch factor is very close to 1, even
if the average nearest neighbor distance is compa-
rable to w.

4 Conclusion

Our goal has been to explore the use of spanners
in computing approximations for maximizing the
number of pairwise disjoint thick paths that can be
routed through a polygonal domain in the plane.
The advantage of using a spanner (e.g., Delaunay
graph) for computing minimum cut values approxi-
mately is that it gives a linear space and near-linear
time simple algorithm in place of the far more com-
plex exact O(nh+ n log n)) algorithm, or the naive
O(n2) algorithm that is easiest to implement. We
have seen experimentally that the Delaunay graph
does very well in most cases; thus, the Delaunay-
based approximation is likely an effective and prac-
tical means of doing capacity estimation for ATM.

The exact min-cut problem is a shortest path
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problem in the plane that may be solvable in
O(n log n) exactly, e.g., by a variant of the continu-
ous Dijkstra paradigm that solves obstacle-avoiding
shortest paths in O(n log n) time. Also, we are ex-
amining possible improved approximations possible
using spanner techniques, and we are now devel-
oping algorithms to produce a set of disjoint thick
paths that achieve the capacity determined by our
approximation algorithms. Finally, we are doing
further experimentation with other Euclidean span-
ner graphs, with stretch factors approaching 1.
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Appendix

Proposition 3 The function f(x) = b(1+ε)xc
bxc , x >

0 is bounded above by 2 when ε ≤ 0.5.

Proof. Note that 1 + ε ≤ 3/2 and that f(x) is a
step function whose value changes only when x = n
or x = n

1+ε , for n ∈ Z+.

When x = n, n ∈ Z+, f(x) ≤ (1+ε)n
n = 1 + ε ≤

3/2.
When x = n

1+ε , n ∈ Z+, f(x) = bnc
bn/(1+ε)c ≤

bnc
b2n/3c . Let g(n) = bnc

b2n/3c . If n = 3k, g(n) =
3
2 . If n = 3k − 1, g(n) = 3k−1

2k−1 and it achieves its
maximum of 2 at k = 1. If n = 3k+ 1, g(n) = 3k+1

2k
which also achieves its maximum of 2 at k = 1.
Thus f(x) ≤ 2 in this case. �
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