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Abstract

In structural molecular biology software, the accessi-
bility of an atom in a molecule to a ball representing
solvent is either computed slowly by building a solvent-
accessible surface, or estimated quickly by counting
neighboring atoms within some radius. We believe that
techniques from computational geometry, notably re-
traction motion planning in Voronoi diagrams, can give
a more direct measure that is faster than surface com-
putation.

We propose an O(n log n) time algorithm for comput-
ing the accessibility radii for sets of points in R2, and
extend this algorithm to sets of circles in R2 and sets of
spheres in R3. We provide results in R3 that approxi-
mates accessibility radii from the power diagram.

1 Introduction

Hydrogen bonds stabilize the most fundamental struc-
tures in protein molecules, so modeling their energies is
important in software for protein structure prediction
or validation [4]. When proteins fold into their three
dimensional structure, atoms that need hydrogen bond
partners are either found on the surface, where they can
bond with water molecules in the solvent, or are buried
in the core, where they must have a partner from the
protein [7, §1–4]. Thus, in order to properly assign the
energy for an atom in a given molecule forming or fail-
ing to form a hydrogen bond, we would like to quantify
how accessible the atom is to solvent.

Two approaches to quantifying accessibility are com-
mon in structural molecular biology software. The ac-
curate but slower approach is to compute the solvent
accessible surface [5], which is the surface composed
of patches of spheres and tori carved out by a probe
sphere that is not allowed to penetrate the atom spheres.
(1.4Å is the nominal radius for water as a probe sphere.)
Atoms are considered accessible in proportion to their
areas that appear on this surface. The faster estimate
is to simply count whether the number of atoms within
a given radius (e.g., 10Å) is below some threshold (e.g.,
24, if counting backbone Cα atoms). This is often used
in simulation and folding, where the energy computa-
tion is repeated many times.

The structural biology models are often based on sur-
prisingly simple geometry: atoms are hard spheres, a
molecule is some thousands of atoms joined by seg-
ments with fixed length and preferred angles that do not
otherwise collide with their near neighbors. The fact
that computational geometry has explored algorithms
for many interesting notions of depth [8] encouraged us
to explore measures of solvent accessibility that might
be faster than building a surface, but more direct and
accurate than neighbor counting. We therefore formal-
ize the problem of computing the accessibility radius,
starting with points.

Given a finite set of points or ball sites S ⊂ Rd, we
define the accessibility radius of a site p ∈ S as the
largest radius of a closed ball that starts completely
outside the convex hull of S and can travel to touch
p without its interior intersecting any site in S. We
can use ideas of retraction-based motion planning to
compute accessibility radius. In the next section we
show these ideas in the plane, where for n points or
unit-radius circles we can compute accessibility radius
for all sites in O(n log n) time. Section 4 describes an
algorithm for computing the accessibility radii of such
atoms (modeled as spheres in R3) from a Voronoi or
power diagram.

2 Accessibility in R2 by retraction

Given a set of point sites S in R2, Ó’Dúnlaing et al. [6]
define the clearance of any point p ∈ R2 as the smallest
distance from p to any site of S. The clearance of a path
in R2 is defined as the minimum of clearance among the
points on this path.

They [6] also introduce the idea of retraction that
maps a path in R2 to a path on the edge skeleton of
the Voronoi diagram of S that has at least as much
clearance as the original path. The key idea is to move
each point p of the path in the direction of gradient of
clearance until it reaches its image point q on the edge
of the Voronoi diagram. Ó’Dúnlaing et al. [6] show that
this map is continuous over R2 \S and, when applied to
a path in R2 that avoids S, gives a continuous path on
the Voronoi diagram.

Thus, retraction reduces the search space for the path
of maximum clearance to the set of paths that lie on
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the edge-skeleton of the Voronoi diagram of S. The
maximum clearance path can be found using a best-first
graph search that labels each vertex with the maximum
clearance among all paths that reach the vertex.

Input: Set S of sites in R2.
Output: Accessibility radii for all sites in S.
Algorithm:

1. Compute the Voronoi diagram V (S) for sites S
2. Compute the minimum clearance of each edge of V (S),

which occurs at either the endpoints of the edge or the
point of intersection of the edge with its dual edge from
the Delaunay triangulation.

3. For each vertex v ∈ V (S), create variable v.cmax ini-
tialized to 0, except for the infinite vertex, which has
cmax =∞. Place these in a priority queue by decreas-
ing cmax.

4. Repeatedly pop the vertex v with greatest v.cmax, and
update max clearance for every neighbor u as u.cmax ←
max (u.cmax, min (v.cmax, uv.clearance))

If the input is equal radius circles in R2, the problem
reduces to computing the accessibility radius of their
center points and subtracting the common radius. If the
input is a set of circles of unequal radii, the only change
is that the graph V (S) computed in step 1 should be
the additively weighted Voronoi diagram of the centers.

3 Points and equal-radius spheres in R3

Given a set S of points in R3, the accessibility radius
of a point in S is defined as the largest radius of a ball
that lies completely outside the convex hull of S and
can travel to p without intersecting any point in S. To
compute the accessibility radii of points in S, we can
map paths in R3 \ S to paths with higher clearance on
the edge skeleton of the Voronoi diagram of S in two
steps. Then accessibility radii of points in S can then
be computed using best-first search. We are fortunate
that the edge skeleton here is connected.

The first retraction step maps each point in the inte-
rior of a Voronoi cell to a point on a Voronoi face. If
the resulting path passes through any local minimum
of clearance inside a face, then it should be perturbed
to avoid this minimum, which will increase clearance.
Then the second retraction can map each point that is
not a local minimum in the interior of a Voronoi face
to a point on a Voronoi edge. The retraction is done
such that at each step a point is mapped to another
point with higher clearance. To see that it maps paths
to paths, we can cover the path with a finite number
of balls that avoid sites in each cell or discs that avoid
local minima in each face and observe that they map to
overlapping neighborhoods.

When S is a set of equal radius spheres, we compute
the accessibility radii of the set of centers of the spheres
in S. Then, the accessibility radius of each sphere in S
is the accessibility radius of its center minus its radius.

4 Unequal radius spheres

When S is a set of spheres with unequal radius we per-
form the first retraction step as in the previous section.
However, we can not perform the second retraction step
since the edge skeleton of the Voronoi diagram of S may
not be connected. We add new vertices and edges to the
edge skeleton of the Voronoi diagram and obtain a con-
nected graph that we call the augmented edge skeleton.
We show that paths in faces can be mapped to paths
with higher clearance on the augmented edge skeleton.
Thus, accessibility radii of points in S can be computed
using a best-first search on this augmented edge skele-
ton.

4.1 Augmented edge skeleton

A bounded Voronoi face F may have a disconnected
boundary consisting of an outer connected component
the we call the outer boundary, and possibly other con-
nected components that we call the inner boundaries.
Each inner boundary has a Voronoi edge that has a
local maximum of clearance in its interior. Because
the faces of an additively weighted Voronoi diagram
are quadratic, the edge formed by their intersection ei-
ther has constant clearance, or at most two maxima and
minima (since any fixed clearance gives two quadratic
curves that have at most four intersection points). We
add a vertex at each local maximum (or one if all points
are maxima) and split the Voronoi edge into two at the
newly added vertex. Since there are O(n) number of
edges, these vertices can be constructed in O(n) time.

Lemma 1 The gradient of clearance at a newly added
vertex points inside F .

Next, we connect these new vertices. Let v be a ver-
tex that is a local maximum of clearance on an inner
boundary of F . From v we move along the gradient of
clearance on F until we reach a (inner or outer) bound-
ary point of F , then move along the boundary in the
increasing direction of clearance until we reach a vertex
u. The minimum of clearance of the path traveled from
v to u occurs at v. We add an edge between u and v and
call u the parent of v. Note that this edge corresponds
to an actual path on F . The parent of v can be com-
puted by intersecting the boundary edges of F with the
plane through v and the two sites closest to points on
F . There are O(n) edges, and for each vertex its parent
can be found in O(n) time. Thus the new edges can be
constructed in O(n2) time.

The graph formed by the addition of the above ver-
tices and edges to the edge-skeleton of the Voronoi dia-
gram of S is called the augmented edge-skeleton. It has
no cycles, so is connected.
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4.2 Retraction from face to augmented skeleton

In this section we prove that paths on faces can be
mapped to paths on the augmented edge-skeleton that
have at least as much clearance as the original path.

Lemma 2 For every boundary point, p, of F there is a
path on the augmented edge skeleton from p to the outer
boundary of F that has the minimum of clearance at p.

Proof. If p lies on the outer boundary of F then the
lemma is trivially true.

If p is a vertex on the inner boundary of F and is
not a local maximum of clearance, then there is an edge
from p to a vertex with strictly higher clearance than
p. This edge has a minimum of clearance at p. If p
is a vertex on the inner boundary of F and is a local
maximum of clearance then there is an edge from p to
its parent that has a minimum of clearance at p. The
clearance of the parent of p is strictly greater than that
of p. Thus, there is an edge from every inner bound-
ary vertex of F to a vertex of F with strictly higher
clearance. Since F has a finite number of vertices on
its boundary, this sequence of increasing vertices has to
terminate at the outer boundary of F . Thus every inner
boundary vertex p is connected to an outer boundary
vertex through a path on the augmented edge skeleton
that has a minimum of clearance at p.

If p lies on an edge of an inner boundary, then we
can move from p along this edge in the direction of in-
creasing clearance until we reach a vertex, v. Since v is
connected to an outer boundary vertex through a path
on the augmented edge skeleton that has a minimum of
clearance at v, the lemma holds for p too.

�

Lemma 3 Let p be an inner boundary point and p′ be
an outer boundary point of F . Let P be a path from
p′ to p on F . Then there is a path from p′ to p on
the augmented edge skeleton that has at least as much
clearance as P

Proof. From the previous lemma we know that there
is a path, PQ, on the augmented edge skeleton from p
to some outer boundary point q that has the minimum
of clearance at p.

Let S1 and S2 be the spheres in S that are associated
with the face F . Let SV be the set of points in R3 that
are equidistant from S1 and S2. F is a subset of SV .
The line connecting the the centers of S1 and S2 passes
through exactly one point, pmin in SV . The clearance
of any point on the closure of F is the distance of that
point from S1 and S2. The gradient of this function at
any point p0 ∈ SV is parallel to the intersection of SV

with the plane defined by p0 and centers of S1 and S2.
Extend the curve P from p′ in the direction of gradi-

ent of clearance to infinity to get the semi-infinite curve

Pext. Similarly extend the curve PQ from q in the di-
rection of gradient of clearance to infinity to get the
semi-infinite curve PQext.

Since F is bounded there are two paths from q to
p′, along the outer boundary, one clockwise, Q+, and
the other anticlockwise, Q−. Let SV 1 be the subset of
SV that is bounded by Pext, PQext and contains Q+

and SV 2 be the subset of SV that is bounded by Pext,
PQext and contains Q−. The interiors of SV 1 and SV 2

are disjoint.
If pmin lies on PQext or Pext then the lemma is triv-

ially true.
Otherwise pmin either lies in the interior of SV 1 or

in the interior of SV 2. Without loss of generality, we
assume that pmin lies in the interior of SV 1. Then we
prove that the path PQ followed by Q− has at least as
much clearance as P .

Let u be any point on Q−. Let C be the curve of
intersection of SV with the plane defined by centers of
S1 and S2 and u. We further restrict our attention to
C ′, the part of C between pmin and u. C ′ is parallel to
the gradient of clearance on SV and intersects PQext or
Pext. Thus there is a point on PQext or Pext that has
no more clearance than u.

Thus Q− has at least as much clearance as P and PQ
and Q− lie completely on the augmented edge-skeleton.

�

Complexity of the Algorithm: Additively
weighted Voronoi diagram can be computed in O(n3)
time [2]. From this diagram the augmented edge skele-
ton can be computed in O(n2) time. The best first
search on the this edge skeleton is done in O(n log n)
time. Since computing additively weighted Voronoi di-
agrams is expensive and uses high degree predicates, in
the next section we test an approximate algorithm that
uses the power diagram instead.

5 Results

In R3 we used the power diagram [1] instead of the ad-
ditively weighted Voronoi diagram in the algorithm of
Section 2. This is an approximation to accessibility ra-
dius because the radii of different atoms are not the
same. Since the radii are similar and the atoms are
well-packed, the edge skeleton of the power diagram is
always connected and we do not need to add new edges
and vertices.

Table 1 lists for three proteins, correlation coefficients
between SASA values and three estimates: the num-
ber of Cα neighbors within 10Å, Dorr’s neighbor vector
measure [3], and accessibility radius.

Due to space constraints, we close with a single
example of comparing the classification of individual
atoms by these methods: Figure 1(b) show recombi-
nant hemoglobin (PDB id 1c7d) colored by classifica-
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(a) (b)

Figure 1: Comparing accessibility radius vs SASA for recombinant hemoglobin, PDB id 1C7D, 4,396 atoms.
(a)Scatter plot of SASA vs 1/(Accessibility radius) (b) Colored by agreement (red=surface, green=buried) and
disagreement (blue=AR buried, cyan=AR surface).

PDB Number of Neighbor Accessibility
id Neighbors Vector Radius

1C7D -0.7745 0.8588 -0.8664
1D0V -0.7904 0.8726 -0.8616

1MBN -0.7923 0.8454 -0.8618

Table 1: Correlation of SASA with number of neigh-
bors, neighbor vector, and accessibility radius on three
proteins: recombinant hemoglobin (1C7D), nicotinate
mononucleotide (1D0V), and myoglobin (1MBN).

tion (surface/buried) by SASA and accessibility radius.
Negative correlation can be seen in the scatter plot (Fig-
ure 1(a)) for SASA and the reciprocal of accessibility
radius values.
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