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Data Structures for Reporting Extension Violations in a Query Range
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Abstract

Design Rule Checking (DRC) in VLSI design involves checking if

a given VLSI layout satisfies a given set of rules, and reporting

the violations if any. We propose data structures for reporting

violations of the minimum extension rule in a query window of

interest.

1 Introduction
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Figure 1: The minimum extension

In VLSI circuits, geometric objects (often orthogonal
rectangles) of two different layers intersect to form ac-
tive components. In Figure 1 the common region be-
tween the intersecting rectangles A and B is an active
component. For correct working of the active compo-
nent, the rectangle B must extend beyond rectangle A
by some distance δ specified by design rules (1.5 units in
Figure 1) and vice-versa. It is often useful for a user to
find violations localized to a query window of interest.
In this work we therefore intend to study some problems
associated to reporting extension violations occurring
inside a query window of interest.
In section 2, we discuss a simple variant of our main
problem which we introduce in section 3.

2 Minimum Extension Violations in an Interval

In this paper, we assume that all the distances are Eu-
clidean. Let dist(a, b) denote the Euclidean distance
between points a and b.

Problem 1 Let P be a set of n points and I be a set of n
segments, all in real line. We need to preprocess P and I into
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a data structure such that given a query interval q = [a, b]
and a parameter δ, all the triplets (p, i, ei) where p ∈ P , i ∈ I
and ei is an end point of the interval i such that i∩p∩q 6= φ
and dist(p, ei) ≤ δ, can be reported efficiently.

Basic Preprocessing: Let the real line be x axis. Let
SH = {e1, . . . , e2n} be the 2n end points of the segments
in I. Let SI = SH ∪ P . Build a segment tree Tx on the
interval decomposition [5] of the x axis induced by the
x coordinates of the points of SI. To each node µ ∈ Tx,
we assign an interval int(µ), which is the union of the
elementary intervals stored at the leaves in the subtree
rooted at µ. We assign a segment i ∈ I to the node µ ∈
Tx, iff int(µ) ⊆ int(i) but int(parent(µ)) * int(i). At
µ we maintain a list Lµ,I which stores all the segments
of the set I allocated to the node µ. For any point
p ∈ P , let pi be its x coordinate, we locate the leaf node
v ∈ Tx (since pi ∈ SI) which contains the value pi. Then
starting from v we allocate the point p to all the nodes
which are predecessors of v ∈ Tx. For any node µ ∈ Tx,
we maintain a list Lµ,P which contains all the points of
the set P allocated to the node µ.

Lemma 1 The storage space required by the segment tree
Tx mentioned above is O(n log n).

Additional Preprocessing: Consider a node µ ∈ Tx.
At the node µ we build two arrays Aµ and Bµ. The
array Aµ (resp. Bµ) stores the left end points (resp.
right end points) of the segments present in Lµ,I in
non-increasing order (resp. non-decreasing order). For
any point p ∈ Lµ,P, we find its distance from the first
points of Aµ and Bµ respectively. Let the distances
be d1 and d2 respectively. For the above mentioned
point p, let pi be its x coordinate. We then make
two 2-d points (pi, d1) and (pi, d2) respectively. We
then make two tuples ((pi, d1), address(µ), f lag) and
((pi, d2), address(µ), f lag) respectively. The flag is a
boolean variable used to identify the array Aµ or Bµ

from which the tuple originated. We follow the proce-
dure for all the nodes z ∈ Tx. Let SP be the set of all
2-d points thus formed. Build a priority search tree [6]
TPST using the points of the set SP.

Lemma 2 The storage space needed by TPST is O(n log n).

Query Algorithm: Given q = [a, b] and a parame-
ter δ, convert it into a three sided rectangle query of
the form q = [a, b] × [−∞, δ]. Search TPST with q. For
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each point ((pi, d)) reported, select the tuple for the cor-
responding point and visit the node (address(µ)) and
traverse the array Aµ or Bµ until we find the first point
ej ∈ Aµ or ej ∈ Bµ such that dist(ej , pi) > δ.

Theorem 1 A set P of n points and a set I of n line
segments can be preprocessed into a data structure of size
O(n log n) such that given a query interval q = [a, b] and
a parameter δ, all the triplets (p, i, ei) where p ∈ P i ∈
I and ei is an end point of interval i can be reported in
O(log n + k) time where k is the number of instances such
that that p ∩ i ∩ q 6= φ and dist(p, ei) ≤ δ.

3 Minimum Extension Violations in a Rectangle

Problem 2 Let H be a set of n horizontal line segments
and V be a set of n vertical line segments. We need to pre-
process them into a data structure such that given a query
rectangle q and a parameter δ, all the triplets (h, v, p) where
h ∈ H, v ∈ V and p is an end point of either of the two
segments, such that h ∩ v ∩ q 6= φ and dist(h ∩ v, p) ≤ δ can
be reported efficiently.

The X-Defect and the Y-Defect: Notice that
when a horizontal-vertical intersection happens, the
horizontal projection of the vertical line segment con-
tributes to the x coordinate of the point of intersection.
Similarly the vertical projection of the horizontal line
segment contributes to the y coordinate of the point of
intersection. We consider the intersecting pair to have
X-Defect (resp. Y-Defect) if the point of intersection
is at a distance less than or equal to δ from any of
the end points of the horizontal (resp. vertical) segment.

Basic Preprocessing: Our outer structure is an in-
stance Tx of the data structure of Lemma 1. Tx is
built on a set of 1-dimensional points and a set of 1-
dimensional intervals. The set of points is the set of x
projections of the vertical segments in V and the set of
intervals is the set of x projections of the horizontal seg-
ments in H. At each node µ ∈ Tx we maintain two lists
Lµ,H, Lµ,V which respectively stores the set of horizon-
tal and vertical segments allocated to µ. At the node
µ create an instance Tµ,y of the data structure of the
Lemma 1. Tµ,y is built on a set of 1-dimensional points
and a set of 1-dimensional intervals. The set of points
is the set of y projections of the horizontal segments in
Lµ,H and the set of intervals is the set of y projections
of the vertical segments in Lµ,V. At each node z ∈ Tµ,y

we maintain two lists Lz,H′ , Lz,V ′ which respectively
stores the set of horizontal and vertical segments allo-
cated to z. At the node z we build two arrays Az,µ

(resp. Bz,µ) which stores the y projections of the lower
end points (resp. upper end points) of the vertical seg-
ments in Lz,V ′ in non-increasing (resp. non-decreasing
) order. Also, at any node µ ∈ Tx, we keep an array

Yproj,µ which stores the y projections of the horizon-
tal segments present in the list Lµ,H. The array Yproj,µ

store the values in non-decreasing order.

Lemma 3 The storage space required by the above men-
tioned basic data structure is O(n log2 n).

Discussion: In this paper, we will discuss how to re-
port the Y-Defects occurring inside the query rectangle.
For reporting the X-Defects, similar steps are required.
Consider the basic data structure of Lemma 3. Let the
q = [a, b]×[c, d] and let Scan be the set of O(log n) nodes
of Tx to which the interval [a, b] is allocated. For the rest
of the paper, we will consider u to be a node in Scan. Let
h and v respectively be two horizontal and vertical line
segments allocated to a node m where m is a descendant
of u ∈ Tx. Let h and v intersect each other and p be
the point of intersection. Then p = (px, py) = (vx, hy)
where vx and hy are the x and y projections of v and h
respectively. It is easy to notice that px, the x coordi-
nate of the point p overlaps with [a, b]. Therefore finding
Y-Defect at any descendant (m) of u ∈ Tx for u ∈ Scan

is a variant of Problem 1. Similarly finding Y-Defects
at the node u itself is directly equivalent to Problem 1.
However finding Y-Defects at any node m′ which is a
predecessor of u ∈ Tx is not equivalent to Problem 1.
This is because int(u) ⊂ int(m′). Hence there may ex-
ist a vertical segment v′ ∈ Lm′,V such that v′ ∩ q = φ
but v′ ∩ h′ 6= φ where h′ ∈ Lm′,H and h′ ∩ q 6= φ.

3.1 When m = u or m is a descendant of u

For any vertical segment v ∈ Lm,V, we know its x
projection vx overlaps with [a, b]. Hence if there exists
a horizontal segment h ∈ Lm,H such that v ∩ h 6= φ,
then we are certain that the x projection of the point
of intersection overlaps with [a, b]. However we cannot
directly visit the node m because it may be quite
possible that the y projection of all the horizontal
segments in Lm,H is greater than d or less than c. In
order to deal with the issue, we need to construct a
variant of hereditary segment tree [1].

Additional Preprocessing: Consider a node µ ∈ Tx.
Remember that at node µ, we have an associated seg-
ment tree Tµ,y. Now consider a horizontal segment
h ∈ Lµ,H. Let Ssec−can be the set of all the nodes
in Tµ,y such that hy ∈ int(z) for z ∈ Ssec−can. Here
hy is the vertical projection of the segment h. At each
node z ∈ Ssec−can, we calculate the distance of hy from
the first points of array Az,µ, and array Bz,µ respec-
tively. Let the calculated distances be d1 and d2 re-
spectively. We then make two 2-d points (hy, d1) and
(hy, d2) and two tuples ((hy, d1), address(z), f lag) and
((hy, d2), address(z), f lag) respectively. The flag is a
boolean variable used to identify the array Az,µ or Bz,µ

from which the tuple originated. Let STuple,µ be the
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set of all the tuples thus built for all the horizontal seg-
ments in Lµ,H. Copy the set STuple,µ to all the prede-
cessors of µ ∈ Tx. This particular step of copying the
list STuple,µ to the predecessors of µ ∈ Tx makes our
data structure a variant of hereditary segment tree. For
any node m ∈ Tx, let Sdesc,m =

⋃
s STuple,s where s is

a descendant of m ∈ Tx. Build a priority search tree
TPST,m at the node m using the 2-d points of the set
S = STuple,m ∪ Sdesc,m.

Lemma 4 The size of the set STuple,µ created at the node
µ ∈ Tx is O(|Lµ,H | log n).

Lemma 5 The total storage space required across all the
nodes in Tx because of the additional preprocessing men-
tioned above is O(n log3 n).

Query Algorithm: Given a query rectangle q =
[a, b] × [c, d] and a parameter δ, allocate the segment
[a, b] to the nodes of Tx. Let Scan be the set of
canonical nodes to which the segment [a, b] is allo-
cated. For any node u ∈ Scan, we search TPST,u with
q = [c, d] × [−∞, δ]. For any point reported, select the
tuple and visit the node from which the tuple originated.
Based on the flag value, visit the array A or B in that
node and traverse the array until we find the first point
for which there is no distance violation.

3.2 When m is a predecessor of u

 d< delta

 p

S1
S4

p

p p

S2
S3

d<deltaYmin

Ymax

Ymin

Ymax

Figure 2: In this figure Ymin and Ymax are respectively the
smallest and the largest y projections of all the horizontal seg-
ments intersected by the rectangle q = [a, b] × [c, d] and are allo-
cated to the predecessors of u ∈ Tx. The figure shows how the
lower end points of the vertical segments that are allocated to u
and are intersecting q can cause Y-Defects inside the rectangle.

Let V ′ be the set of all vertical segments that are causing
Y-Defects inside the query rectangle q = [a, b] × [c, d].
It is easy for us to notice that V ′ ⊆ ⋃

u∈Scan
Lu,V.

Hence at any node u ∈ Scan we classify, the vertical
segments allocated to u into three categories. Let V1

be the set of vertical segments which intersect q, whose
both end points are outside q and at least one of whose
end points is causing a Y -Defect inside q. Let V2 be the
set of vertical segments for which at least one endpoint
is inside q and is causing a Y -Defect inside q. Let V3

be the set of vertical segments for which exactly one

endpoint is outside q and causing a Y -Defect inside q.
In the Figure 2, S1 is a segment of the set V1, S2, S3

are segments of the set V2 and S4 is a segment of type V3.

Additional Preprocessing: In the rest of the section
we will discuss all the preprocessing that we need to
do at every node µ ∈ Tx to discover the Y-Defects
caused by the lower end points of the vertical segments
allocated to the node µ by intersecting with horizontal
segments allocated to the predecessors of µ ∈ Tx.
Similar preprocessing has to be done for finding the
Y-Defects caused by the upper end points of the
vertical segments allocated to the node µ.

For segments of the set V1: Convert the vertical
projections ([vy1 , vy2 ]) of the vertical segments (v) in
Lµ,V into 2-d points (vy1 , vy2). Build a priority search
tree T ′PST,µ on the 2-d points thus constructed. The
storage space required at node µ for this additional
preprocessing is O(|Lµ,V |).

For segments of the set V2: For any v ∈ Lµ,V , build
an array infov,µ. The size of the array should be equal
to the number of predecessors of µ ∈ Tx. For any v ∈
Lµ,V visit all the predecessors (m) of µ ∈ Tx. Let the
y projection of v be [vy1 , vy2 ]. At the node m, find
the smallest value (ym) in the array Yproj,m such that
vy1 ≤ ym ≤ vy2 . Store the ym values collected from
the predecessors in the array infov,µ in non-decreasing
order. Calculate the distance between vy1 and the first
value of the array infov,µ. Let the distance be d. Build
a 2-d point (vy1 , d). Follow the same procedure for all
the vertical segments in Lµ,V. Let Sµ be the set of 2-d
points thus produced.

For any vertical segment in v′ ∈ Lµ,V such that
v′ does not intersect with any horizontal segment
allocated to the predecessors of µ, we discard that
segment. At the node µ, we then build a priority search
tree T ′′PST,µ on the points of the set Sµ. The storage
space required for this additional preprocessing at node
µ is O(|Lµ,V| log n).

For segments of the set V3: Convert the vertical
projections ([vy1 , vy2 ]) of the vertical segments (v) in
Lµ,V into a 2-d points (vy1 , vy2). Preprocess these points
in an instance T ′′′µ of the data structure of [2] such that
given a query rectangle, all the points inside the query
rectangle can be reported in O(log n + k) time where k
is the output size. An instance T ′′′µ of the data structure
of [2] will need a storage space of O(|Lµ,V| log n) at the
node µ.

Lemma 6 The total storage space required because of all
the three above mentioned additional preprocessing across all
the nodes in Tx is O(n log2 n).
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Query Algorithm: Given q = [a, b]× [c, d] let Scan be
the set of O(log n) nodes in Tx to which the segment
[a, b] is allocated. Let u be a node in Scan. At the node
u we do the following: We visit each predecessor (m) of
u ∈ Tx and find the smallest value (ym) and the largest
value (y′m) in the array Yproj,m such that c ≤ ym ≤ d
(resp. c ≤ y′m ≤ d). Remember that Yproj,m is an array
that we have created during the basic preprocessing
stage at the node m ∈ Tx and it stores the y projections
of the horizontal segments present in the list Lm,H in
non-decreasing order. Store all the ym and y′m values
thus collected in two arrays Projmin and Projmax

in non-decreasing and non-increasing order respectively.

Finding segments of type V1 at the node u: No-
tice that any vertical segment v ∈ Lu,V such that
v ∈ V1 will intersect any horizontal segment h ∈ Lm,H

such that h ∩ q 6= φ and m is a predecessor of u ∈ Tx.
Let Ymin be the first value of the array Projmin.
Notice that the lower end point p of v can cause a
Y-Defect inside q iff dist(vy1 , Ymin) ≤ δ where vy1 is
the y projection of the point p. Hence we select the
first value (Ymin) of the array Projmin and calculate
the distance dist(c, Ymin) = w. If w < δ, we search
T ′PST,u with the query [Ymin− δ, c)× (d,∞]. Any point
(vy1 , vy2) thus reported is the y interval for a vertical
line segment (v) such that v ∩ q 6= φ and both the end
points of v are outside q. Also the lower end point p
of v has a Y-Defect with the horizontal segment (h)
whose y projection is equal to Ymin and h ∈ Lm,H

where m is a predecessor of u ∈ Tx . For each point
(vy1 , vy2) thus reported, we traverse the array Projmin

until we discover a value yj ∈ Projmin such that
dist(vy1 , yj) > δ. For each value ym ∈ Projmin such
that dist(ym, vy1) ≤ δ thus discovered in the above step,
we visit the predecessor node m of u ∈ Tx and traverse
the array Yproj,m starting from ym until we find a value
yc ∈ Yproj,m such that (a) yc > d or (b) dist(yc, vy1) > δ.

Finding segments of type V2 at the node u: No-
tice that any vertical segment v ∈ Lu,V whose lower
end point p is inside the rectangle q but the upper end
point r is outside q can have an intersection with any
horizontal segment inside q if and only if v intersects
the horizontal segment h whose y projection is the first
value (Ymax) of the array Projmax. On the other hand,
if both the end points of v are inside the rectangle q,
we are quite certain that v intersects some horizontal
segment h inside q. Remember that if there exists a
vertical segment in Lu,V which does not intersect with
any horizontal segment allocated to the predecessors
of u, we discard that segment. Let v ∈ Lu,V be a
vertical with its y projection equal to [vy1 , vy2 ] such
that c ≤ vy1 ≤ Ymax ≤ d ≤ vy2 . Notice that we are
sure that v causes an intersection with some horizontal

segments (h) such that h ∩ q 6= φ and the horizontal
segments are allocated to the predecessors of u ∈ Tx.
Let ys is the smallest y projection of all the horizontal
segments being intersected by v inside q. Notice that
ys will be the first value of the array infov,u and
Ymin ≤ ys ≤ Ymax. Remember that infov,u is an array
that we have created for the segment v at the node
u during the additional preprocessing stage for the
segments of the set V2. The lower end point p of v
can cause Y-Defect inside q iff dist(vy1 , ys) = d ≤ δ.
Remember that we have the 2-d point (vy1 , d) in the
priority search tree T ′′PST,u. We therefore search T ′′PST,u

with [c, Ymax]×[−∞, δ]. For any point (vy1 , d) reported,
vy1 is the y projection of the lower end point of some
vertical segment v ∈ Lu,V. Take the array infov,u

and the vertical projection of the vertical segment v
([vy1 , vy2 ]). Traverse the array infov,u until we find a
value yj such that dist(vy1 , yj) > δ or yj > d. For each
yi ∈ infov,u such that dist(vy1 , yi) < δ and yi ≤ d, visit
the node i ∈ Tx from which the value yi originated.
At node i traverse the array Yproj,i starting from the
location of the value yi until we find a value yc ∈ Yproj,i

such that one of the following three conditions get
satisfied: (a) dist(vy1 , yc) > δ (b) yc > d (c) yc > vy2 .

Finding segments of type V3 at the node u: Cal-
culate the distance dist(c, Ymin) = w. If w < δ, search
T ′′′u with the query [Ymin − δ, c) × [Ymin, d]. For any
point reported proceed as discussed for the segments of
type V1.

Theorem 2 A set H of n horizontal line segments and a
set V of n vertical line segments can be preprocessed into
a data structure of size O(n log3 n) such that given a query
rectangle q = [a, b]× [c, d] and a parameter δ, all the triplets
(h, v, p) where h ∈ H v ∈ V and p is an end point of either
of the segments can be reported in O(log2 n + k) time where
k is the number of instances such that that h∩v∩ q 6= φ and
dist(h ∩ v, p) ≤ δ.
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