
CCCG 2009, Vancouver, BC, August 17–19, 2009

Data Structures for Reporting Extension Violations in a Query Range

Ananda Swarup Das∗ Prosenjit Gupta† Kannan Srinathan∗

Abstract

Design Rule Checking (DRC) in VLSI design involves checking if

a given VLSI layout satisfies a given set of rules, and reporting

the violations if any. We propose data structures for reporting

violations of the minimum extension rule in a query window of

interest.

1 Introduction

1.5

Extension

A

B

Figure 1: The minimum extension

In VLSI circuits, geometric objects (often orthogonal
rectangles) of two different layers intersect to form ac-
tive components. In Figure 1 the common region be-
tween the intersecting rectangles A and B is an active
component. For correct working of the active compo-
nent, the rectangle B must extend beyond rectangle A
by some distance δ specified by design rules (1.5 units in
Figure 1) and vice-versa. It is often useful for a user to
find violations localized to a query window of interest.
In this work we therefore intend to study some problems
associated to reporting extension violations occurring
inside a query window of interest.
In section 2, we discuss a simple variant of our main
problem which we introduce in section 3.

2 Minimum Extension Violations in an Interval

In this paper, we assume that all the distances are Eu-
clidean. Let dist(a, b) denote the Euclidean distance
between points a and b.

Problem 1 Let P be a set of n points and I be a set of n
segments, all in real line. We need to preprocess P and I into

∗Centre for Security, Theory and Algorithmic Research,
International Institute of Information Technology, Gachi-
bowli, Hyderabad, Andhra Pradesh 500 032, India. Email:
anandaswarup@research.iiit.ac.in, srinathan@iiit.ac.in.

†Mentor Graphics, Hyderabad, Andhra Pradesh 500 082, In-
dia. Email: prosenjit gupta@acm.org.

a data structure such that given a query interval q = [a, b]
and a parameter δ, all the triplets (p, i, ei) where p ∈ P , i ∈ I
and ei is an end point of the interval i such that i∩p∩q 6= φ
and dist(p, ei) ≤ δ, can be reported efficiently.

Basic Preprocessing: Let the real line be x axis. Let
SH = {e1, . . . , e2n} be the 2n end points of the segments
in I. Let SI = SH ∪ P . Build a segment tree Tx on the
interval decomposition [5] of the x axis induced by the
x coordinates of the points of SI. To each node µ ∈ Tx,
we assign an interval int(µ), which is the union of the
elementary intervals stored at the leaves in the subtree
rooted at µ. We assign a segment i ∈ I to the node µ ∈
Tx, iff int(µ) ⊆ int(i) but int(parent(µ)) * int(i). At
µ we maintain a list Lµ,I which stores all the segments
of the set I allocated to the node µ. For any point
p ∈ P , let pi be its x coordinate, we locate the leaf node
v ∈ Tx (since pi ∈ SI) which contains the value pi. Then
starting from v we allocate the point p to all the nodes
which are predecessors of v ∈ Tx. For any node µ ∈ Tx,
we maintain a list Lµ,P which contains all the points of
the set P allocated to the node µ.

Lemma 1 The storage space required by the segment tree
Tx mentioned above is O(n log n).

Additional Preprocessing: Consider a node µ ∈ Tx.
At the node µ we build two arrays Aµ and Bµ. The
array Aµ (resp. Bµ) stores the left end points (resp.
right end points) of the segments present in Lµ,I in
non-increasing order (resp. non-decreasing order). For
any point p ∈ Lµ,P, we find its distance from the first
points of Aµ and Bµ respectively. Let the distances
be d1 and d2 respectively. For the above mentioned
point p, let pi be its x coordinate. We then make
two 2-d points (pi, d1) and (pi, d2) respectively. We
then make two tuples ((pi, d1), address(µ), f lag) and
((pi, d2), address(µ), f lag) respectively. The flag is a
boolean variable used to identify the array Aµ or Bµ

from which the tuple originated. We follow the proce-
dure for all the nodes z ∈ Tx. Let SP be the set of all
2-d points thus formed. Build a priority search tree [6]
TPST using the points of the set SP.

Lemma 2 The storage space needed by TPST is O(n log n).

Query Algorithm: Given q = [a, b] and a parame-
ter δ, convert it into a three sided rectangle query of
the form q = [a, b] × [−∞, δ]. Search TPST with q. For

21st Canadian Conference on Computational Geometry, 2009

each point ((pi, d)) reported, select the tuple for the cor-
responding point and visit the node (address(µ)) and
traverse the array Aµ or Bµ until we find the first point
ej ∈ Aµ or ej ∈ Bµ such that dist(ej , pi) > δ.

Theorem 1 A set P of n points and a set I of n line
segments can be preprocessed into a data structure of size
O(n log n) such that given a query interval q = [a, b] and
a parameter δ, all the triplets (p, i, ei) where p ∈ P i ∈
I and ei is an end point of interval i can be reported in
O(log n + k) time where k is the number of instances such
that that p ∩ i ∩ q 6= φ and dist(p, ei) ≤ δ.

3 Minimum Extension Violations in a Rectangle

Problem 2 Let H be a set of n horizontal line segments
and V be a set of n vertical line segments. We need to pre-
process them into a data structure such that given a query
rectangle q and a parameter δ, all the triplets (h, v, p) where
h ∈ H, v ∈ V and p is an end point of either of the two
segments, such that h ∩ v ∩ q 6= φ and dist(h ∩ v, p) ≤ δ can
be reported efficiently.

The X-Defect and the Y-Defect: Notice that
when a horizontal-vertical intersection happens, the
horizontal projection of the vertical line segment con-
tributes to the x coordinate of the point of intersection.
Similarly the vertical projection of the horizontal line
segment contributes to the y coordinate of the point of
intersection. We consider the intersecting pair to have
X-Defect (resp. Y-Defect) if the point of intersection
is at a distance less than or equal to δ from any of
the end points of the horizontal (resp. vertical) segment.

Basic Preprocessing: Our outer structure is an in-
stance Tx of the data structure of Lemma 1. Tx is
built on a set of 1-dimensional points and a set of 1-
dimensional intervals. The set of points is the set of x
projections of the vertical segments in V and the set of
intervals is the set of x projections of the horizontal seg-
ments in H. At each node µ ∈ Tx we maintain two lists
Lµ,H, Lµ,V which respectively stores the set of horizon-
tal and vertical segments allocated to µ. At the node
µ create an instance Tµ,y of the data structure of the
Lemma 1. Tµ,y is built on a set of 1-dimensional points
and a set of 1-dimensional intervals. The set of points
is the set of y projections of the horizontal segments in
Lµ,H and the set of intervals is the set of y projections
of the vertical segments in Lµ,V. At each node z ∈ Tµ,y

we maintain two lists Lz,H′ , Lz,V ′ which respectively
stores the set of horizontal and vertical segments allo-
cated to z. At the node z we build two arrays Az,µ

(resp. Bz,µ) which stores the y projections of the lower
end points (resp. upper end points) of the vertical seg-
ments in Lz,V ′ in non-increasing (resp. non-decreasing
) order. Also, at any node µ ∈ Tx, we keep an array

Yproj,µ which stores the y projections of the horizon-
tal segments present in the list Lµ,H. The array Yproj,µ

store the values in non-decreasing order.

Lemma 3 The storage space required by the above men-
tioned basic data structure is O(n log2 n).

Discussion: In this paper, we will discuss how to re-
port the Y-Defects occurring inside the query rectangle.
For reporting the X-Defects, similar steps are required.
Consider the basic data structure of Lemma 3. Let the
q = [a, b]×[c, d] and let Scan be the set of O(log n) nodes
of Tx to which the interval [a, b] is allocated. For the rest
of the paper, we will consider u to be a node in Scan. Let
h and v respectively be two horizontal and vertical line
segments allocated to a node m where m is a descendant
of u ∈ Tx. Let h and v intersect each other and p be
the point of intersection. Then p = (px, py) = (vx, hy)
where vx and hy are the x and y projections of v and h
respectively. It is easy to notice that px, the x coordi-
nate of the point p overlaps with [a, b]. Therefore finding
Y-Defect at any descendant (m) of u ∈ Tx for u ∈ Scan

is a variant of Problem 1. Similarly finding Y-Defects
at the node u itself is directly equivalent to Problem 1.
However finding Y-Defects at any node m′ which is a
predecessor of u ∈ Tx is not equivalent to Problem 1.
This is because int(u) ⊂ int(m′). Hence there may ex-
ist a vertical segment v′ ∈ Lm′,V such that v′ ∩ q = φ
but v′ ∩ h′ 6= φ where h′ ∈ Lm′,H and h′ ∩ q 6= φ.

3.1 When m = u or m is a descendant of u

For any vertical segment v ∈ Lm,V, we know its x
projection vx overlaps with [a, b]. Hence if there exists
a horizontal segment h ∈ Lm,H such that v ∩ h 6= φ,
then we are certain that the x projection of the point
of intersection overlaps with [a, b]. However we cannot
directly visit the node m because it may be quite
possible that the y projection of all the horizontal
segments in Lm,H is greater than d or less than c. In
order to deal with the issue, we need to construct a
variant of hereditary segment tree [1].

Additional Preprocessing: Consider a node µ ∈ Tx.
Remember that at node µ, we have an associated seg-
ment tree Tµ,y. Now consider a horizontal segment
h ∈ Lµ,H. Let Ssec−can be the set of all the nodes
in Tµ,y such that hy ∈ int(z) for z ∈ Ssec−can. Here
hy is the vertical projection of the segment h. At each
node z ∈ Ssec−can, we calculate the distance of hy from
the first points of array Az,µ, and array Bz,µ respec-
tively. Let the calculated distances be d1 and d2 re-
spectively. We then make two 2-d points (hy, d1) and
(hy, d2) and two tuples ((hy, d1), address(z), f lag) and
((hy, d2), address(z), f lag) respectively. The flag is a
boolean variable used to identify the array Az,µ or Bz,µ

from which the tuple originated. Let STuple,µ be the

CCCG 2009, Vancouver, BC, August 17–19, 2009

set of all the tuples thus built for all the horizontal seg-
ments in Lµ,H. Copy the set STuple,µ to all the prede-
cessors of µ ∈ Tx. This particular step of copying the
list STuple,µ to the predecessors of µ ∈ Tx makes our
data structure a variant of hereditary segment tree. For
any node m ∈ Tx, let Sdesc,m =

⋃
s STuple,s where s is

a descendant of m ∈ Tx. Build a priority search tree
TPST,m at the node m using the 2-d points of the set
S = STuple,m ∪ Sdesc,m.

Lemma 4 The size of the set STuple,µ created at the node
µ ∈ Tx is O(|Lµ,H | log n).

Lemma 5 The total storage space required across all the
nodes in Tx because of the additional preprocessing men-
tioned above is O(n log3 n).

Query Algorithm: Given a query rectangle q =
[a, b] × [c, d] and a parameter δ, allocate the segment
[a, b] to the nodes of Tx. Let Scan be the set of
canonical nodes to which the segment [a, b] is allo-
cated. For any node u ∈ Scan, we search TPST,u with
q = [c, d] × [−∞, δ]. For any point reported, select the
tuple and visit the node from which the tuple originated.
Based on the flag value, visit the array A or B in that
node and traverse the array until we find the first point
for which there is no distance violation.

3.2 When m is a predecessor of u

 d< delta

 p

S1
S4

p

p p

S2
S3

d<deltaYmin

Ymax

Ymin

Ymax

Figure 2: In this figure Ymin and Ymax are respectively the
smallest and the largest y projections of all the horizontal seg-
ments intersected by the rectangle q = [a, b] × [c, d] and are allo-
cated to the predecessors of u ∈ Tx. The figure shows how the
lower end points of the vertical segments that are allocated to u
and are intersecting q can cause Y-Defects inside the rectangle.

Let V ′ be the set of all vertical segments that are causing
Y-Defects inside the query rectangle q = [a, b] × [c, d].
It is easy for us to notice that V ′ ⊆ ⋃

u∈Scan
Lu,V.

Hence at any node u ∈ Scan we classify, the vertical
segments allocated to u into three categories. Let V1

be the set of vertical segments which intersect q, whose
both end points are outside q and at least one of whose
end points is causing a Y -Defect inside q. Let V2 be the
set of vertical segments for which at least one endpoint
is inside q and is causing a Y -Defect inside q. Let V3

be the set of vertical segments for which exactly one

endpoint is outside q and causing a Y -Defect inside q.
In the Figure 2, S1 is a segment of the set V1, S2, S3

are segments of the set V2 and S4 is a segment of type V3.

Additional Preprocessing: In the rest of the section
we will discuss all the preprocessing that we need to
do at every node µ ∈ Tx to discover the Y-Defects
caused by the lower end points of the vertical segments
allocated to the node µ by intersecting with horizontal
segments allocated to the predecessors of µ ∈ Tx.
Similar preprocessing has to be done for finding the
Y-Defects caused by the upper end points of the
vertical segments allocated to the node µ.

For segments of the set V1: Convert the vertical
projections ([vy1 , vy2]) of the vertical segments (v) in
Lµ,V into 2-d points (vy1 , vy2). Build a priority search
tree T ′PST,µ on the 2-d points thus constructed. The
storage space required at node µ for this additional
preprocessing is O(|Lµ,V |).

For segments of the set V2: For any v ∈ Lµ,V , build
an array infov,µ. The size of the array should be equal
to the number of predecessors of µ ∈ Tx. For any v ∈
Lµ,V visit all the predecessors (m) of µ ∈ Tx. Let the
y projection of v be [vy1 , vy2]. At the node m, find
the smallest value (ym) in the array Yproj,m such that
vy1 ≤ ym ≤ vy2 . Store the ym values collected from
the predecessors in the array infov,µ in non-decreasing
order. Calculate the distance between vy1 and the first
value of the array infov,µ. Let the distance be d. Build
a 2-d point (vy1 , d). Follow the same procedure for all
the vertical segments in Lµ,V. Let Sµ be the set of 2-d
points thus produced.

For any vertical segment in v′ ∈ Lµ,V such that
v′ does not intersect with any horizontal segment
allocated to the predecessors of µ, we discard that
segment. At the node µ, we then build a priority search
tree T ′′PST,µ on the points of the set Sµ. The storage
space required for this additional preprocessing at node
µ is O(|Lµ,V| log n).

For segments of the set V3: Convert the vertical
projections ([vy1 , vy2]) of the vertical segments (v) in
Lµ,V into a 2-d points (vy1 , vy2). Preprocess these points
in an instance T ′′′µ of the data structure of [2] such that
given a query rectangle, all the points inside the query
rectangle can be reported in O(log n + k) time where k
is the output size. An instance T ′′′µ of the data structure
of [2] will need a storage space of O(|Lµ,V| log n) at the
node µ.

Lemma 6 The total storage space required because of all
the three above mentioned additional preprocessing across all
the nodes in Tx is O(n log2 n).

21st Canadian Conference on Computational Geometry, 2009

Query Algorithm: Given q = [a, b]× [c, d] let Scan be
the set of O(log n) nodes in Tx to which the segment
[a, b] is allocated. Let u be a node in Scan. At the node
u we do the following: We visit each predecessor (m) of
u ∈ Tx and find the smallest value (ym) and the largest
value (y′m) in the array Yproj,m such that c ≤ ym ≤ d
(resp. c ≤ y′m ≤ d). Remember that Yproj,m is an array
that we have created during the basic preprocessing
stage at the node m ∈ Tx and it stores the y projections
of the horizontal segments present in the list Lm,H in
non-decreasing order. Store all the ym and y′m values
thus collected in two arrays Projmin and Projmax

in non-decreasing and non-increasing order respectively.

Finding segments of type V1 at the node u: No-
tice that any vertical segment v ∈ Lu,V such that
v ∈ V1 will intersect any horizontal segment h ∈ Lm,H

such that h ∩ q 6= φ and m is a predecessor of u ∈ Tx.
Let Ymin be the first value of the array Projmin.
Notice that the lower end point p of v can cause a
Y-Defect inside q iff dist(vy1 , Ymin) ≤ δ where vy1 is
the y projection of the point p. Hence we select the
first value (Ymin) of the array Projmin and calculate
the distance dist(c, Ymin) = w. If w < δ, we search
T ′PST,u with the query [Ymin− δ, c)× (d,∞]. Any point
(vy1 , vy2) thus reported is the y interval for a vertical
line segment (v) such that v ∩ q 6= φ and both the end
points of v are outside q. Also the lower end point p
of v has a Y-Defect with the horizontal segment (h)
whose y projection is equal to Ymin and h ∈ Lm,H

where m is a predecessor of u ∈ Tx . For each point
(vy1 , vy2) thus reported, we traverse the array Projmin

until we discover a value yj ∈ Projmin such that
dist(vy1 , yj) > δ. For each value ym ∈ Projmin such
that dist(ym, vy1) ≤ δ thus discovered in the above step,
we visit the predecessor node m of u ∈ Tx and traverse
the array Yproj,m starting from ym until we find a value
yc ∈ Yproj,m such that (a) yc > d or (b) dist(yc, vy1) > δ.

Finding segments of type V2 at the node u: No-
tice that any vertical segment v ∈ Lu,V whose lower
end point p is inside the rectangle q but the upper end
point r is outside q can have an intersection with any
horizontal segment inside q if and only if v intersects
the horizontal segment h whose y projection is the first
value (Ymax) of the array Projmax. On the other hand,
if both the end points of v are inside the rectangle q,
we are quite certain that v intersects some horizontal
segment h inside q. Remember that if there exists a
vertical segment in Lu,V which does not intersect with
any horizontal segment allocated to the predecessors
of u, we discard that segment. Let v ∈ Lu,V be a
vertical with its y projection equal to [vy1 , vy2] such
that c ≤ vy1 ≤ Ymax ≤ d ≤ vy2 . Notice that we are
sure that v causes an intersection with some horizontal

segments (h) such that h ∩ q 6= φ and the horizontal
segments are allocated to the predecessors of u ∈ Tx.
Let ys is the smallest y projection of all the horizontal
segments being intersected by v inside q. Notice that
ys will be the first value of the array infov,u and
Ymin ≤ ys ≤ Ymax. Remember that infov,u is an array
that we have created for the segment v at the node
u during the additional preprocessing stage for the
segments of the set V2. The lower end point p of v
can cause Y-Defect inside q iff dist(vy1 , ys) = d ≤ δ.
Remember that we have the 2-d point (vy1 , d) in the
priority search tree T ′′PST,u. We therefore search T ′′PST,u

with [c, Ymax]×[−∞, δ]. For any point (vy1 , d) reported,
vy1 is the y projection of the lower end point of some
vertical segment v ∈ Lu,V. Take the array infov,u

and the vertical projection of the vertical segment v
([vy1 , vy2]). Traverse the array infov,u until we find a
value yj such that dist(vy1 , yj) > δ or yj > d. For each
yi ∈ infov,u such that dist(vy1 , yi) < δ and yi ≤ d, visit
the node i ∈ Tx from which the value yi originated.
At node i traverse the array Yproj,i starting from the
location of the value yi until we find a value yc ∈ Yproj,i

such that one of the following three conditions get
satisfied: (a) dist(vy1 , yc) > δ (b) yc > d (c) yc > vy2 .

Finding segments of type V3 at the node u: Cal-
culate the distance dist(c, Ymin) = w. If w < δ, search
T ′′′u with the query [Ymin − δ, c) × [Ymin, d]. For any
point reported proceed as discussed for the segments of
type V1.

Theorem 2 A set H of n horizontal line segments and a
set V of n vertical line segments can be preprocessed into
a data structure of size O(n log3 n) such that given a query
rectangle q = [a, b]× [c, d] and a parameter δ, all the triplets
(h, v, p) where h ∈ H v ∈ V and p is an end point of either
of the segments can be reported in O(log2 n + k) time where
k is the number of instances such that that h∩v∩ q 6= φ and
dist(h ∩ v, p) ≤ δ.

References

[1] B. Chazelle, H. Edelsbrunner, L.J. Guibas and M. Sharir. Algorithms for
Bichromatic Line Segment Problems and Polyhedral Terrains, Algorithmica 11:
116-132 Springer Verlag (1994)

[2] P.K. Agarwal, and J. Erickson. Geometric range searching and its rela-
tives. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in
Discrete and Computational Geometry, Contemporary Mathematics, 23, 1999,
1–56, American Mathematical Society Press.

[3] P. Gupta. Algorithms for range-aggregate query problems involving ge-
omteric aggregation operations. Proceedings, International Symposium on Al-
gorithms and Computation, Springer Verlag LNCS, Vol. 3827, 2005, 892–901.

[4] T.G. Szymanski, and C.J. van Wyk. Layout analysis and verification,
in Physical Design Automation of VLSI Systems, B. Preas and M. Lorenzetti
eds., Benjamin/Cummins, 1988, 347–407.

[5] M. de. Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications, Springer, Verlag, 2000.

[6] E.M. McCreight. Priority Search Trees, SIAM Journal of Computing, 14 (2),
1985, 257-276.

