
CCCG 2009, Vancouver, BC, August 17–19, 2009

How to make a picturesque maze

Yoshio Okamoto∗† Ryuhei Uehara‡

Abstract

In the picturesque maze generation problem, we are
given a rectangular black-and-white raster image and
want to randomly generate a maze in which the solu-
tion path fills up the black pixels. While a simple for-
mulation of the problem faces with NP-hardness, the
proposed method generates such a maze in polynomial
time by appropriately changing the formulation itself.
Therefore, the algorithm itself is quite simple.

Figure 1: An example of a picturesque maze. (Up) A
given black-and-white raster image. (Middle) An out-
put, where two green rhombi represent the entrance and
the exit. (Down) Showing that the solution path gives
the input image.

∗Graduate School of Information Science and Engineering,
Tokyo Institute of Technology, okamoto@is.titech.ac.jp
†Supported by Global COE Program “Computationism as a

Foundation for the Sciences” and Grant-in-Aid for Scientific Re-
search from Ministry of Education, Science and Culture, Japan,
and Japan Society for the Promotion of Science.
‡School of Information Science, Japan Advanced Institute of

Science and Technology, uehara@jaist.ac.jp

1 Introduction

The goal of this work is to solve the following pic-
turesque maze generation problem.

Picturesque Maze Generation Problem
Input A black-and-white raster image withm rows and

n columns.
Output A maze in which the solution path fills up the

input black pixels.

Figure 1 shows an example. The specification of an
input and an output is vague: This is intentional. Re-
finement of this part is contained in the formulation (or
the formalization) of the problem, and this also forms a
core of this work.

Our formalization and the algorithm have the follow-
ing features.

• We only require the input image to be connected
with respect to the 4-neighborhood1 (good).
• The solution path of an output precisely coincides

with the input image (good).
• We do not face with any NP-hard subproblems, and

the core subroutine is random generation of a span-
ning tree in an undirected graph. Therefore, we do
not need any complicated algorithm (good).
• We cannot specify the entrance and the exit arbi-

trarily (bad).
• The quality of an output maze does not have to be

high (bad).

Maze generation is a subfield of puzzle generation,
and it strongly has an artistic aspect. There are some
algorithmic studies on maze generation. First, it of-
ten appears as an application of random generation of
spanning trees, and for example a paper by Propp and
Wilson [7] exhibits a randomly generated maze. The
webpage “Think Labyrinth!” by Walter D. Pullen [8]
explains the outlines of many maze generation algo-
rithms. However, these algorithms do not generate a
picturesque maze.

Not much research has been done for generation of
picturesque mazes. For mazes that show pictures as
their solutions, as in this work, Conceptis Ltd. de-
veloped a generation algorithm, and published several
books with lots of picturesque mazes made by it (that

1Equivalent to the von Neumann neighborhood in the field of
cellular automata.



21st Canadian Conference on Computational Geometry, 2009

they call “Maze-a-Pix”, for example see [3]). The detail
of their algorithm is not made public to us. There are
also some Japanese books on picturesque mazes [6, 11],
but they do not look to be automatically generated. On
the other hand, Xu and Kaplan [9, 10] study the au-
tomatic generation of mazes that themselves look like
pictures.

2 Outline of our method

For a given black-and-white raster image with m rows
and n columns, we call the set of black pixels the fore-
ground, and the set of white pixels the background.

First, let us review how to generate a (not necessar-
ily picturesque) maze. We are given a rectangle with m
rows and n columns (Figure 2 up left). We think of each
cell as a vertex (Figure 2 up middle), and join a pair of
adjacent cells by an edge (Figure 2 up right). This gives
rise to an undirected graph. Then, choose a spanning
tree of the graph (Figure 2 down left). Remove the edges
of cells that cross the edges of the spanning tree (Fig-
ure 2 down middle), and choose arbitrary two cells as
the entrance and the exit. This completes the construc-
tion of a maze (Figure 2 down right). A path between
the entrance and the exit is uniquely determined, and
this is the solution path of the maze.

Figure 2: How to construct a maze.

Now, let us move to generation of a picturesque maze.
We are given a black-and-white raster image with m
rows and n columns (Figure 3 left). As before, we con-
struct an undirected graph by thinking of each cell as
a vertex (Figure 3 middle), and a pair of adjacent cells
as an edge (Figure 3 right). If we could choose an ap-
propriate spanning tree of this graph, we would obtain
a desired maze. However, to this end, the graph should
possess a path that goes through all vertices correspond-
ing to the black cells. Namely, if we call the subgraph
induced by the vertices corresponding to the black cells
the foreground subgraph, then such a path is a Hamilto-
nian path of the foreground subgraph.

Unfortunately, an input image might have no such
Hamiltonian path. Furthermore, it is NP-complete to
decide whether such a graph (namely, a grid graph) has
a Hamiltonian path [4]. If the input image has no “hole”

Figure 3: Toward generation of a picturesque maze.

(namely, the image is simply connected), then this de-
cision problem can be solved in polynomial time [5].
However, it would be a quite strong assumption if we
would forbid the existence of a hole, and even though the
image has no hole, we cannot guarantee the existence
of a Hamiltonian path. If the foreground subgraph has
no Hamiltonian path, then we need to modify the input
image. We would need to do all of these tasks efficiently
while keeping the quality of the image, and this is not
trivial.

Hence, in this work we only require the input image to
give rise to a connected foreground subgraph. If it is not
connected, we still need to modify the input; However,
this is much easier than making the graph have a Hamil-
tonian path. The connectedness of an undirected graph
can be decided in linear time (see an appropriate text-
book on graph algorithms). There is even a linear-time
constant-space algorithm to decide the connectedness of
a black-and-white raster image [1].

Our method can be summarized in the following sen-
tence: If the foreground subgraph has no Hamiltonian
path, then, instead of modifying the image to have a
Hamiltonian path, we just modify the scale of the image.
Here is a more concrete description. Again, we are given
a black-and-white image with m rows and n columns
(Figure 4 left). Then, we subdivide each cell into 2× 2
smaller cells. This yields an image with 2m rows and 2n
columns (Figure 4 middle). If the foreground subgraph
of the original input image is connected, then the fore-
ground subgraph of the new finer image always has a
Hamiltonian path, and such a path can be found quite
easily as explained in the next section. Based on this
path, we can generate a desired maze (Figure 4 right).
This is the outline. The next section explains the detail.

Figure 4: Outline of our method.

3 Detail of our method

Our method is divided into the following two steps.



CCCG 2009, Vancouver, BC, August 17–19, 2009

3.1 Generation of the foreground or a solution path

Again, we are given a black-and-white image with m
rows and n columns in which the foreground graph is
connected (Figure 5 up left). We construct the undi-
rected graph as before (Figure 5 up middle). In the
foreground graph (Figure 5 up right), we generate a
random spanning tree (Figure 5 down left). Now we
traverse the spanning tree in the planar manner (Fig-
ure 5 down middle). Then, along the traversal path we
create a Hamiltonian path in the refined image with 2m
rows and 2n columns. This forms a solution path of our
maze (Figure 5 down right). The entrance and the exit
of the maze will be the endpoints of the Hamiltonian
path.

Figure 5: Generation of the foreground.

3.2 Generation of the background

Now we look at the refined image with 2m rows and 2n
columns and consider the subgraph obtained by remov-
ing the edges in the foreground graph that are not used
in the Hamiltonian path (Figure 6 left). Generate a ran-
dom spanning tree in that subgraph (Figure 6 middle),
and extract the maze from the spanning tree (Figure 6
right).

This completes the description of our generation al-
gorithm for picturesque mazes. It is simple. The com-
plexity depends on how to generate a random spanning
tree, but it can be done in polynomial time (e.g. [7]).

Figure 6: Generation of the background.

3.3 Heuristic improvement

From the preliminary implementation, we observed that
in some large mazes generated by our method the fore-
ground and the background can easily be separated

without solving the mazes. To avoid this, we introduce
a simple heuristic improvement method.

As a reason for the separation, we observed that the
foreground is often coarser than the background. This
seems because the foreground is produced from the m×
n grid while the background is from the 2m × 2n grid.
Therefore, it is important to erase a fine structure of
a background. One of such fine structures is a group
of deadends. Since a deadend has many walls, it looks
darker when seen from the distance. Furthermore, a
maze with many deadends is easier to solve since it is
easy to detect a wrong branch at an intersection of the
maze: Such a maze is not fun. Hence, it should be
effective to introduce a heuristic method to reduce the
number of deadends.

Our method removes a deadend that is adjacent to
another deadend. A concrete procedure is as follows.

In the maze, let two cells u and v be adjacent dead-
ends that are not the entrance or the exit. Then, let
Pu be a path from u to the first intersection bu in the
maze. Similarly, let Pv be a path from v to the first
intersection bv (Figure 7 left). Now, for example, if at
the intersection bu we put a wall in front of the path
Pu, and destroy the wall between u and v, then we ob-
tain another maze (Figure 7 right). In this new maze,
v is not a deadend any more since we have a path from
the new wall at the end of Pu to bv through Pu, u, v
and Pv. This operation always decreases the number of
deadends.

v u

bu

bv

v u

bu

bv

Figure 7: A heuristic improvement of a maze.

As a heuristic method, we repeat this operation until
no more operation can be applied. By a clever imple-
mentation, this can be done in linear time (i.e., O(mn)
time). In fact Figure 1 is the outcome of this improve-
ment. Figure 8 shows a successive application of this
heuristic operations to the maze in Figure 6 right.

4 A little bigger example

For fun, we made a little bigger sample maze in Figure 9.
In the first row you can find the entrance and the exit.

5 Conclusion

We proposed a method to generate a random pic-
turesque maze for a given black-and-white raster image.



21st Canadian Conference on Computational Geometry, 2009

Figure 8: Successive application of our heuristic oper-
ations. A pair of blue crosses means the deadends to
which we apply the operation.

Our method is simple and easy to implement. In prac-
tice it is fast, so we plan to exhibit a demonstration at
the conference.

The world of maze construction looks deep, and more
algorithmic problems should be hidden. It has a strong
artistic flavor, and so we need to utilize methods both
from computer graphics and from algorithm theory.

Acknowledgment The authors thank Ryohei Nakai
for implementing the preliminary algorithm which
shows interesting phenomena.

References

[1] T. Asano and H. Tanaka. Constant-working space algo-
rithms for connected components labeling (Japanese).
COMP2008-1 (2008) pp. 1–8.

[2] Conceptis Limited. Conceptis puzzles.
http://www.conceptispuzzles.com/, Accessed on July
1, 2009.

[3] Conceptis Puzzles. Picture This! Mazes. Sterling, New
York, 2005.

[4] A. Itai, C.H. Papadimitriou and J.L. Szwarcfiter.
Hamilton paths in grid graphs. SIAM Journal on Com-
puting 11 (1982) 676–686.

[5] W. Lenhart and C. Umans. Hamiltonian cycles in solid
grid graphs. Proc. 38th FOCS (1997) 496–507.

[6] S. Mochizuki. Ukidashi Meiro 1 (Japanese). Gakken,
2006.

[7] J.G. Propp, D.B. Wilson. How to get a perfectly ran-
dom sample from a generic Markov chain and generate
a random spanning tree of a directed graph. Journal of
Algorithms 27 (1998) 170–217.

[8] W.D. Pullen. Think Labyrinth!
http://www.astrolog.org/labyrnth.htm, Accessed on
July 1, 2009.

[9] J. Xu and C.S. Kaplan. Image-guided maze construc-
tion. Proceedings of SIGGRAPH 2007, ACM Transac-
tions on Graphics 26 (2007), Article No. 29.

[10] J. Xu and C.S. Kaplan. Vortex maze construction. Jour-
nal of Mathematics and the Arts 1 (2007) 7–20.

[11] K. Yuzawa. Aiueo Meiro (Japanese). Nikoli, 2003.

Figure 9: A sample maze with 196 rows and columns.
Namely, the input image has 98 rows and columns.


