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The spanning ratio of the Delaunay triangulation is greater than π/2
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Abstract

Consider the Delaunay triangulation T of a set P of
points in the plane. The spanning ratio of T , i.e. the
maximum ratio between the length of the shortest path
between this pair on the graph of the triangulation and
their Euclidean distance. It has long been conjectured
that the spanning ratio of T can be at most π/2. We
show in this note that there exist point sets in convex
position with a spanning ratio > 1.5810 and in general
position with a spanning ratio > 1.5846, both of which
are strictly larger than π/2 ≈ 1.5708. Furthermore, we
show that any set of points drawn independently from
the same distribution will, with high probability, have
a spanning ratio larger than π/2.

1 Introduction

For a graph embedded in a Euclidean space, the dila-
tion for any pair of points is the ratio of their distance
along edges of the graph over their Euclidean distance
along a straight line. The concept of dilation is used in
computational geometry for the construction of span-
ners [6, 7, 9–11]: a t-spanner is a graph defined on a set
of points such that the dilation between any two points
is at most t.

One of the first results in computational geometry
on spanners was a proof of Chew’s conjecture [2] that
the Delaunay triangulation is a spanner in the plane.
Dobkin, Friedman and Supowit proved that the Delau-
nay triangulation of any set of points in the plane is a
(1 +

√
5)π/2-spanner [5]; the best upper bound known

is t = (4
√

3/9)π ≈ 2.418 by Keil and Gutwin [8]. In this
conference, Cui, Kanj and Xia established a new upper
bound of 2.33 for points in convex position [3].

However, no point sets are known to actually achieve
these ratios. Up until now, the largest ratio known was
π/2 − ε, for any ε, achieved by sampling points P uni-
formly on a circle [2]. Mark two antipodal points p
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Figure 1: A set of points on a circle has a spanning ratio
that approaches π/2.

and p′, and triangulate P by taking all edges almost
perpendicular to pp′, as in Figure 1. Since all points
are co-circular, any triangulation of P is a valid Delau-
nay triangulation; alternatively, we could perturb the
points to break the co-circularity, and make this the
only triangulation. The shortest path from p to p′ via
the network follows the boundary of the circle, so its
length approaches π. On the other hand, the Euclidean
distance is clearly 2, leading to a dilation of t→ π/2.

In their book on spanners, Narasimhan and Smid
mention that “it is widely believed that, for every set
of points in R2, the Delaunay triangulation is a (π/2)-
spanner” [11]. At CCCG 2007, the special case of the
spanning ratio of a set of points in convex position was
stated as an open problem [4]. We show here that even
for points in convex position, there are point sets that
achieve a spanning ratio larger than π/2, by providing
a concrete example. Additionally, we can modify the
construction and create a point set not in convex po-
sition with slightly larger spanning ratio. We do not
yet know whether the maximum spanning ratio can be
approached by points in convex position.

Finally, we show how to modify the example to prove
that for any random set of points drawn from a single
distribution, with high probability the spanning ratio
of the Delaunay triangulation of that point set is very
close to (or even larger than) that of our example.

2 Examples with greater spanning ratio

To form our examples of points with spanning ratio
greater than π/2, we use a simple observation about
paths around sectors of unit circles:
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Figure 2: (a) The basic construction consists of two unit semicircles with centers on the x axis separated by d. (b)
We evenly sample points on the semicircles, and mark two points p and p′ that make an angle of α with the x-axis.
(c) We choose the Delaunay triangulation to maximize the shortest path in the triangulation from p to p′.
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Figure 3: (a) The straight line between p and p′. (b) One locally shortest path simply follows the boundary and has
length π + d. (c) Another locally shortest path crosses the construction once and has length π + 2− 2α+ d.

Observation 1 Consider the sector of a unit circle de-
fined by points q, q′ that subtend angle θ, and place p
between them so that arc pq has angle β. The short-
est path from p to q around the boundary of this sector
follows the arc if β ≤ θ/2 + sin(θ/2).

We are now ready to describe the construction for
points in convex position. Form a convex region
bounded by two unit semicircles having centers on the
x axis separated by distance d, as shown in Figure 2(a).
Introduce points on the boundary uniformly; actually,
it suffices to introduce points only on the semicircles.
Mark two points p and p′ at an angle of α from the
x-axis, as shown in Figure 2(b). Next, triangulate the
semicircle with p by adding chords to the convex hull in
a way that ensure that any shortest path from p to the
endpoints of the semicircle follow the boundary of the
circle. One possibility is shown in Figure 2(c); actually,
we can accept any semicircle chord that defines an arc
containing p and satisfies Observation 1 ensures that the
arc is the shortest path from p to either endpoint.

In our triangulation there are two types of locally
optimal paths from p to p′, drawn thicker in Figure 3(b)
and 3(c). The first type, which follows the perimeter of
the region (clockwise or counter-clockwise), has length
π + d, since we walk around one semicircle and bridge

the gap of width d. The other type, which crosses over
via one of the vertical edges, and has length 2 · (π/2 −
α) for the two circular arcs plus 2 + d for the straight
parts, so π+ 2− 2α+ d in total. Observation 1 ensures
that any other path will be longer. If we set α = 1,
these two lengths are equal. Finally, we have to compute
the length of the Euclidean distance between p and p′,
which is easily shown to be

√
4 + d2 + 4d cos 1. Thus,

the dilation approaches t = π+d√
4+d2+4d cos 1

; if we set d =
0.29 this gives t > 1.581 > π

2 .

Theorem 1 There exists a set P of points in convex
position in the plane, such that the Delaunay triangula-
tion of P has a spanning ratio of 1.5810.

If we allow points that are not in convex position,
we can modify this construction and increase the span-
ning ratio slightly. The idea is to bend the two straight
segments so their points lie on a common circle. The
graph of the triangulation inside the polygon remains
unchanged, but we would like to prevent short-cuts by
edges that are now needed to complete the triangulation
outside.

At each of the four locations where a smaller circle
meets C, we add a shield point s on the line through the
center of the small circle, and draw a ray from s through
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the center of C. We place points densely on the arcs of
the circles, leaving gaps in the angle formed by the ray
from s. The position of s on its line is chosen so that the
tangents from s to the two circles form a path that is just
longer than the path that follows the polygon boundary.
The triangulation outside the polygon is completed by
fans from each shield point s.

For the best ratio, we use sectors of the unit circles
that subtend only 2.2895 radians and place p and p′ by
Observation 1. Separating the circle centers by 0.29, we
obtain a straight line of length 2.4 and a spanning ratio
> 1.5846.

Theorem 2 There exists a set P of points in the plane
such that the Delaunay triangulation of P has a span-
ning ratio of 1.5846.

3 The spanning ratio of random point sets

The example described in the previous section is highly
degenerate. However, for any finite number n of points,
it is easy to alter the construction slightly such that the
points are in general position, while keeping a spanning
ratio arbitrarily close to the one of the example above.
For points in general position, we know that there ex-
ists a δ such that when every point is perturbed by at
most δ, the combinatorial structure of the Delaunay tri-
angulation remains the same. See [1] for a proof and an
algorithm to compute δ.

With this alteration, we can use the example to show
that with high probability a random set of points has
a spanning ratio that is close to the one in the exam-
ple. The spanning ratio of the Delaunay triangulation is
a special case of what we call a standard parameter se-
quence. We say that a function Ln from

(
Rd

)n to [0,∞)
is a standard parameter sequence when it complies with
the following conditions.

(i) There is an upper limit:

lim inf
n→∞

sup
x1,...,xn

Ln(x1, . . . , xn) = L∗ ∈ (0,∞).

(ii) For each n, Ln is scale and translation invariant,
that is, Ln(ax1 + b, . . . , axn + b) = Ln(x1, . . . , xn)
for all a 6= 0, b ∈ Rd.

(iii) The limiting configurations are local:

lim inf
n→∞

sup
x1,...,xn∈[0,1]d

inf
m,y1,...,ym 6∈[0,1]d

Ln+m(x1, . . . , xn, y1, . . . , ym) = L∗ ∈ (0,∞).

It takes a moment to verify that the spanning ratio of
a Delaunay triangulation is a standard parameter, even
though we may not know L∗. We note here that if we
know that L∗ ≥ L∗∗, then (1-2) hold with L∗ replaced
by L∗∗. By Theorem 1 we can set L∗∗ = 1.581.

In the full version of this paper we prove a general the-
orem on standard parameter sequences that essentially
says that a copy of some pessimal construction can be
expected in a random point set under weak restrictions;
the probability density f mentioned in the theorem can
have unbounded support, and could possibly fail to be
continuous at almost all x.

Theorem 3 Let Ln: (Rd)n → R be a standard param-
eter sequence for n ≥ 1, with a lower bound L∗ on its
limit, and let X1, . . . , Xn be i.i.d. random vectors drawn
from a common density f in Rd, then for every ε > 0,

lim
n→∞

P {Ln(X1, . . . , Xn) ≥ L∗ − ε} = 1.

Acknowledgments

The third author would like to thank Herman Haverkort
and Elena Mumford for providing a stimulating working en-
vironment while working on this problem. This research was
partially supported by the Netherlands Organisation for Sci-
entific Research (NWO) through the project GOGO.

References

[1] M. Abellanas, F. Hurtado, and P. A. Ramos. Structural
tolerance and Delauny triangulation. Inf. Process. Lett.,
71(5-6):221–227, 1999.

[2] L. P. Chew. There are planar graphs almost as good as
the complete graph. JCSS, 39:205–219, 989.

[3] S. Cui, I. A. Kanj, and G. Xia. On the dilation of
Delaunay triangulations of points in convex position.
In Proc. 21st CCCG, 2009. This proceedings.

[4] E. D. Demaine and J. O’Rourke. Open problems from
CCCG 2007. In Proc. 20th CCCG, 2008.

[5] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. De-
launay graphs are almost as good as complete graphs.
Discrete Comput. Geom., 5:399–407, 1990.

[6] A. Ebbers-Baumann, A. Grüne, and R. Klein. The
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