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Watchman Route in a Simple Polygon
with a Rubberband Algorithm
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Abstract

So far, the best result in running time for solving the
fixed watchman route problem (i.e., shortest path for
viewing any point in a simple polygon with given start
point) is O(n3 log n), published in 2003 by M. Dror, A.
Efrat, A. Lubiw, and J. Mitchell. – This paper provides
an algorithm with κ(ε) · O(kn) runtime, where n is the
number of vertices of the given simple polygon Π, and k
the number of essential cuts; κ(ε) defines the numerical
accuracy in dependency of a selected constant ε > 0.
Moreover, our algorithm is significantly simpler, easier
to understand and implement than previous ones for
solving the fixed watchman route problem.

1 Introduction

Let Π be a planar, simple, topologically closed poly-
gon with n vertices, and ∂Π be its frontier. A point
p ∈ Π is visible from point q ∈ Π iff pq ⊂ Π. The (float-
ing) watchman route problem (WRP) of computational
geometry, as discussed in [2], is defined as follows: Cal-
culate a shortest route ρ ⊂ Π such that any point p ∈ Π
is visible from at least one point on ρ. If a start point
of the route is given on ∂Π then this refined problem is
known as the fixed WRP. In the rest of this paper, let
s ∈ ∂Π be the starting point of the fixed WRP.

A simplified WRP of finding a shortest route in a sim-
ple isothetic polygon was solved in 1988 in [7] by pre-
senting an O(n log log n) algorithm. In 1991, [8] claimed
to have presented an O(n4) algorithm, solving the fixed
WRP. In 1993, [21] obtained an O(n3) solution for the
fixed WRP. In the same year, this was further improved
to a quadratic time algorithm [22]. However, four years
later, in 1997, [10] pointed out that the algorithms in
both [8] and [21] were flawed, but presented a solution
for fixing those errors. Interestingly, two years later,
in 1999, [23] found that the solution given by [10] was
also flawed! By modifying the (flawed) algorithm pre-
sented in [21], [23] gave an O(n4) runtime algorithm for
the fixed WRP. In 1995 and 1999, [17] and [6] gave an
O(n6) algorithm for the WRP respectively. This was
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improved in 2001 by an O(n5) algorithm in [24]. So far
the best known result for the fixed WRP is due to [9] by
presenting in 2003 an O(n3 log n) runtime algorithm.

Given the time complexity of those algorithms for
solving the WRP, finding efficient approximation algo-
rithms became an interesting subject. Recall the follow-
ing definition; see, for example, [11]: An algorithm is an
δ-approximation algorithm for a minimization problem
P iff, for each input of P , the algorithm delivers a solu-
tion that is at most δ times the optimum solution. In
case of the WRP, the optimum solution is defined by
the length of the shortest path.

In 1995, [14] published an O(log n)-approximation
algorithm for solving the WRP. In 1997, [5] gave a
99.98-approximation algorithm with time complexity
O(n log n) for the WRP. In 2001, [25] presented a linear-
time algorithm for an approximative solution of the
fixed WRP such that the length of the calculated watch-
man route is at most twice of that of the shortest watch-
man route. The coefficient of accuracy was improved
to

√
2 in [26] in 2004. Most recently, [27] presented a

linear-time algorithm for the WRP for calculating an
approximative watchman route of length at most twice
of that of the shortest watchman route.

Let ESP denote the class of any Euclidean shortest
path problem. Corresponding to the definition of δ-
approximation algorithms, we introduce the following
definition: A Euclidean path is a δ-approximation (Eu-
clidean) path for an ESP problem iff its length is at most
δ times the optimum solution.

The paper is organized as follows: Section 2 defines
some notations for later usage. Section 3 proposes and
discusses the main algorithm of this paper. Section 4
concludes.1

2 Preliminaries

We recall some definitions from [9] and [27]. A vertex
v of Π is called reflex if v’s internal angle is greater
than 180◦. Let u be a vertex of Π which is adjacent
to a reflex vertex v. Assume that the straight line uv
intersects an edge of Π at v′. Then the segment C =
vv′ partitions Π into two parts. C is called a cut of Π
if C makes a convex vertex at v in the part containing

1An expanded version is MI-tech report no. 51 at www.mi.

auckland.ac.nz/.



22nd Canadian Conference on Computational Geometry, 2010

the starting point s, and v is called a defining vertex of
C. That part of Π which contains s is called essential
part of C and is denoted by Π(C). The other part of
Π is called the pocket induced by cut C, and C is the
associated cut of the pocket. A cut C dominates a cut
C ′ iff Π(C) contains Π(C ′). A cut is called essential
if it is not dominated by another cut. (Also known as
‘non-redundant chord’ in the literature.) A pocket is
called essential if it does not contain any other pocket.
A pocket is essential iff its associated cut is essential.

If two points u and v are on two different edges of Π,
such that the segment uv partitions Π into two parts,
then we say that uv is a general cut of Π. We may
arbitrarily select one of both endpoints of the segment
uv to be its start point. In the rest of this paper, for
an essential cut C of Π, we identify the defining vertex
of C with its start point. If C0, C1, . . ., Ck−1 are all
the essential cuts of Π such that their start points are
ordered clockwise around on ∂Π, then we say that C0,
C1, . . ., Ck−1 and Π satisfy the condition of the fixed
watchman route problem.

Let p, q ∈ Π; if pq ⊂ Π then q can see p (with respect
to Π), and p is a visible point of q. Let q ∈ Π and
assume a segment s ⊂ Π. If, for each p ∈ s, q can see p,
then we say that q can see s.

Let q ∈ Π, segment s ⊂ Π, p ∈ s, and p is not an
endpoint of s. If q can see p, but for any sufficiently
small ε > 0, q cannot see p′, where p′ ∈ s and Euclidean
distance de(p, p′) = ε, then we say that p is a visible
extreme point of q (with respect to s and Π).

Let segment s ⊂ Π and q ∈ Π \ s. If there exists a
subsegment s′ ⊆ s such that q can see s′, and each end-
point of s′ is a visible extreme point of q or an endpoint
of s, then we say that s′ is a maximal visible segment
of q (with respect to Π). Let s0, s1, . . ., and sk−1 be k
segments (k ≥ 2) in three-dimensional Euclidean space
(in short: 3D), p ∈ s0, and q ∈ sk−1.

Let LS(p, q) be the length of the shortest path,
starting at p, then visiting segments s1, . . ., and
sk−2 in order, and finally ending at q, where S =
〈s0, s1, . . . , sk−1〉. Let p, q ∈ Π. We denote by LΠ(p, q)
the length of the shortest path from p to q inside of Π.

Let ρ be a polygonal path and V (ρ) the set of all ver-
tices of ρ; |V (ρ)| is the number of vertices of ρ. Denote
by C(S) the convex hull of a set S. Let S0, S1, . . .,
and Sk−1 be k non-empty sets; let

∏k−1
i=0 Si be the cross

product of those sets.
This ends our introduction of technical terms. We

also recall in one place here two results which will be
cited later in this paper:

• Lemma 1 ([9], page 475) A solution to the fixed
watchman route problem (i.e., a shortest tour) vis-
its the essential cuts in the same order as the defin-
ing vertices meet ∂Π.

• Theorem 2 ([27], Theorem 1) Given a simple
polygon Π; the set C of all essential cuts for the
watchman route in Π can be computed in O(n)
time.

3 Algorithms

In this section, we describe and discuss now the
promised algorithm for solving the fixed watchman
route problem.

3.1 Two Procedures and Main Algorithm

The main algorithm uses two procedures; the second
applies a 2D ESP algorithm (see [16], pages 639–641).
We present the used procedures first, and the main al-
gorithm later.

As described in Section ??, the main idea of a Rub-
berband Algorithm (RBA) is as follows: In each it-
eration, we update (by finding a local minimum or
optimal vertex) the second vertex pi for every three-
subsequent-vertices subsequence pi−1, pi, pi+1 in a step
set {S1, S2, . . . , Sk}. The first procedure below com-
putes the maximal visible segment, which is actually an
element of the step set of the used RBA. The second
procedure is used for updating the vertices.

Procedure 1 Compute Maximal Visible Segment
Input: Polygon Π and a general cut C of Π; let v1 and
v2 be two endpoints of C; two points p and q such that
p ∈ C and p is a visible point of q ∈ ∂Π \ C.
Output: Two points p′1, p′2 ∈ C such that p is in the
segment p′1p

′
2, and p′1p

′
2 is the maximal visible segment

of q.

Figure 1: Illustration for Procedure 1.

We describe Procedure 1 informally. – Case 1: p is
not an endpoint of C. For i ∈ {1, 2}, if q can see vi,
(see left, Figure 1), let p′i be vi; otherwise, let Vi be
the set of vertices in V (∂Π) such that each vertex in
Vi is in 4qpvi. Apply the convex hull algorithm (see,
e.g., [15] or Figure 13.7, [12]) to compute C(Vi). Apply
the tangent algorithm (see [20]) to find a point p′i ∈ C
such that qp′i is a tangent to C(Vi) (see right of Fig-
ure 1). – Case 2: p is an endpoint of C. Without loss
of generality, assume that p = v1. Let p′1 be p. Let V2
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be the set of vertices in V (∂Π) such that each vertex
in V2 is in 4qpvi. Apply the convex hull algorithm to
compute C(V2). Apply the tangent algorithm to find a
point p′2 ∈ C such that qp′2 is a tangent to C(V2).

Procedure 2 Handling of Three General Cuts
Input: Three general cuts C1, C2 and C3 of Π; three
points pi ∈ Ci, for i = 1, 2, 3; and a degeneration accu-
racy constant ε2 > 0.
Output: An updated shorter path ρ(p1, . . . , p2, . . . , p3)
that might also contain vertices of the polygon Π.

1: For both i ∈ {1, 2}, let {pi, pi+1} (where pi ∈ Ci)
be the input for the 2D ESP algorithm; the output
is a set Vii+1 - the set of vertices of a shortest path
from pi to pi+1 inside of Π. Let V be V12 ∪V23.

2: Find q1 and q3 ∈ V such that 〈q1, p2, q3〉 is a subse-
quence of V (i.e., q1, p2, q3 appear consecutively in
V ).

3: Let C = C2, p = p2, q = qi, apply Procedure 1 to
find the maximal visible segment si = p′1p

′
2 of qi, i

= 1, 3.
4: Find vertex p′2 ∈ s2 = s1 ∩ s3 such that de(q1, p

′
2) +

de(p′2, q3) = min{de(q1, p
′) + de(p′, q3) : p′ ∈ s2}.

5: If C2 ∩ C1 (or C3) 6= ∅ and p′2 is the intersection
point, then ε2-transform p′2 into another point (still
denoted by p′2) in C2.

6: Update V by letting p2 be p′2.

Note that in Procedure 2, if C1 or C3 degenerates to
a single point, then this procedure still works correctly.

Algorithm 1 Main Algorithm
Input: k essential cuts C0, C1, . . ., Ck−1, and Π, which
satisfy the condition of the fixed WRP, and points pi ∈
Ci, where i = 0, 1, 2, . . ., k−1; and an accuracy constant
ε > 0 and a degeneration accuracy constant ε2 > 0.
Output: An updated closed {1 + 4k[r(ε) + ε2]/L}-
approximation path ρ(s, p0, . . . , p1, . . . , pk−1, s), which
may also contain vertices of Π, where L is the length of
an optimal path, r(ε) the upper error bound2 for dis-
tances between pi and the corresponding optimal vertex
p′i: de(pi, p

′
i) ≤ r(ε), for i = 0, 1, . . . , k − 1.

The following pseudo code is fairly easy to read, and
we defer from providing another (more informal) high
level description of Algorithm 1.

1: For i ∈ {0, 1, . . . , k − 1}, let pi be the center of Ci.
2: Let V0 and V be a sequence of points
〈p0, p1, . . . , pk−1〉; L1 be

∑k
i=−1 LΠ(pi, pi+1);

and L0 be ∞ (p−1 = pk = s).
3: while L0 − L1 ≥ ε do
4: for each i ∈ {0, 1, . . . , k − 1} do
5: Let Ci−1, Ci, Ci+1, pi−1, pi, pi+1 and Π be the

input for Procedure 2, which updates pi in V0.
(C−1 = Ck = p−1 = pk = s)

2It is obvious to see that limε→0 r(ε) = 0

6: Let Ui be the sequence of vertices of the
path ρ(pi−1, . . . , pi, . . . , pi+1) with respect to
Ci−1, Ci and Ci+1 (inside of Π); let Ui be
〈q1, q2, . . . , qm〉.

7: Insert (after pi−1) the points of sequence Ui (in
the given order) into V0; i.e., we have that V1 =
〈p0, p1, . . . , pi−1, q1, q2, . . . , qm, pi+1, . . . , pk−1〉.
(Note: sequence V1 is the updated sequence
V0, after inserting Ui)

8: end for
9: Let L0 be L1 and V0 be V (Note: we use the

updated original sequence V instead of V1 for the
next iteration).

10: Calculate the perimeter L1 of the polygon, given
by the sequence V1 of vertices.

11: end while
12: Output sequence V1, and the desired length equal

to L1.

3.2 Correctness and Time Complexity

We state without proof:

Theorem 3 If the chosen accuracy constant ε > 0 is
sufficiently small, then Algorithm 1 outputs a unique
{1+4k · [r(ε)+ε2]/L}-approximation (closed) path with
respect to the step set 〈S0, S1, . . . , Sk−1, S0〉, for any ini-
tial path.

Theorem 3 says that Algorithm 1 outputs an approx-
imate solution to the fixed WRP; we have the following:

Theorem 4 Algorithm 1 outputs an
{1 + 4k · [r(ε) + ε2]/L}-approximation solution to the
fixed WRP.

Proof.
∑k

i=−1 LΠ(pi, pi+1) :
∏k

i=−1 Ci → R is a con-
vex function, where LΠ(pi, pi+1) is defined as in Step 2
of Algorithm 1. Basic results in the theory of convex
functions and Theorem 3 prove then the theorem. �

Regarding the time complexity of our solution to the
fixed WRP, we first state the fact that Procedure 1 and
Procedure 2 can be computed in time O(|V (∂Π)|). Fur-
thermore, note that the main computation is in the two
stacked loops. The while-loop takes κ(ε) iterations. By
the stated fact, the for-loop can be computed in time
O(k · |V (∂Π)|). Thus, Algorithm 1 can be computed in
time

κ(ε) · O(k · |V (∂Π)|)

By Lemma 1 and Theorem 2, we may conclude that this
paper provided an {1+4k · [r(ε)+ε2]/L}-approximation
solution to the fixed WRP, having time complexity κ(ε)·
O(k · |V (∂Π)|), where k is the number of essential cuts,
and L is the length of an optimal watchman route.
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4 Concluding Remarks

This paper applies basic ideas of RBAs, which were pro-
posed in digital geometry [4, 12] for the specific 3D ESP
of calculating shortest Euclidean “loops” in a sequence
of cubes. (We refined those ideas such that we now also
have a general “arc” version of an RBA.)

The basic idea of an RBA might be generalized to es-
tablish a whole class of rubberband algorithms (RBAs)
for solving various Euclidean shortest path problems.
The main algorithm of this paper (Algorithm 1) is just
an example for such an RBA. As indicated in Note 1,
in distinction to already published approximation algo-
rithms, our algorithm offers a high accuracy. In some
simple polygons, we find the exact solution to the fixed
WRP, in the others we converge to the correct solution.
A large number of experimental results also indicate
that κ(ε) = O(k), where k is the number of essential
cuts. It remains a challenge to prove a smallest upper
bound for κ(ε).

Altogether, our algorithm is not only faster than pre-
viously published solutions to the fixed WRP, but also
significantly simpler, easier to understand and to imple-
ment.
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