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The 3-dimensional Searchlight Scheduling Problem
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Abstract

The problem of searching for a mobile intruder in a
polygonal region by a set of stationary guards, each car-
rying an orientable laser, is known in the literature as
the Searchlight Scheduling Problem. A long-standing
conjecture concerns the NP-hardness of deciding if a
given polygon is searchable by a given set of guards.

In this paper we introduce the more general problem
of detecting an intruder in a 3-dimensional polyhedral
region by a set of searchplanes within a given time, and
we prove its NP-hardness.

1 Introduction

The 2-dimensional Searchlight Scheduling Problem
(SSP) was first studied in [5] as a variation on the
well-known Art Gallery Problem. Consider a set of
point-guards, called searchlights, statically positioned in
a polygonal environment (which may be thought of as a
floor plan, with edges as walls). Each guard can only see
along a ray, but may continuously vary the direction of
visibility over time (as if each guard is carrying a laser
beam). An intruder is also hiding in the polygon, and
is allowed to continuously move with unbounded speed.
SSP asks for a schedule for the angular motion of the
searchlights, such that the intruder is necessarily de-
tected by some searchlight in finite time, no matter what
path he takes. The intruder is detected by a searchlight
if it lies on its ray of vision, while the polygon’s exterior
blocks both vision and movement. A trivial necessary
condition for a problem instance to be solvable is that
each point in the polygon must be potentially visible by
at least one guard, and that every guard which is not
visible by any other guard must be located on the poly-
gon’s boundary. Therefore, all valid problem instances
are supposed to satisfy this condition.

In [5] a heuristic is presented to search a simple poly-
gon, which is guaranteed to solve all valid problem in-
stances in which there is at least one searchlight located
on the boundary for every connected component of their
visibility graph. In particular, if all guards lie on the
boundary, they have a successful searching schedule.
Simple necessary and sufficient conditions for a poly-
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gon with one or two searchlights to have a successful
schedule are also given in [5].

A complete searchlight scheduling algorithm for poly-
gons with holes is described in [3], based on exact cell
decomposition. The same paper also mentions the prob-
lem of minimizing searching time, in a scenario where
searchlights have bounded angular speeds, as an inter-
esting and yet unexplored variation of SSP.

The original SSP was further extended by considering
guards carrying k > 1 searchlights, called k-guards. The
oo-guard is then defined as the traditional guard from
the Art Gallery Problem. In [6] some upper bounds
on si(P) are given, that is the minimum number of k-
guards required to search a polygon P, while it is well-
known from [2] that computing s (P) is NP-hard.

The problem of determining the exact complexity of
SSP was not directly addressed in [5], but it has become
a rather important issue over time. Even though it is
still unknown whether SSP is NP-hard, the algorithm
given in [3] can be practical for problem instances of
useful size.

In this paper we model what we believe to be the
first 3-dimensional version of the Searchlight Scheduling
Problem. Specifically, we consider searchlights modeled
as segment-beams statically placed in a polyhedral re-
gion, emitting searchplanes which can be rotated about
such segments at bounded angular speeds. Our main
contribution is the proof of the NP-hardness of com-
puting the minimum time required to search a given
polyhedral region by a given set of searchlights.

2 Definitions

For the purposes of this paper, a polyhedral surface will
be a connected orientable 2-manifold without bound-
ary, union of a finite number of plane polygons (possi-
bly with holes) in R?, such that any two coplanar poly-
gons are either disjoint or their intersection is a com-
mon vertex. Such a surface disconnects R? in exactly
one bounded component (interior) and one unbounded
component (exterior). The union of a polyhedral sur-
face and its interior is called polyhedron. A polyhedron
is orthogonal iff each one of its edges is parallel to some
axis.

The formulation of the 3-dimensional Searchlight
Scheduling Problem is now straightforwardly adapted
from [5], provided that a new definition of searchlight
is given. In this context, a searchlight in a polyhedron
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P will be any non-degenerate line segment contained in
P. A schedule for a searchlight ¢ is a continuous func-
tion f, : [0,T] — S!, expressing the orientation of £’s
searchplane over time. So, a point x € P is visible by
a searchlight ¢ at time ¢ € [0, 7] iff z is visible by some
point in £, and x lies on the half-plane whose end-line
contains £ and whose orientation is expressed by fo(t).
In other words, a searchlight is a line segment ¢ that is
able to emit a half-plane of light in any desired direction,
and rotate it continuously about the axis defined by ¢
itself. A searching schedule is said to clear P iff, by time
T, any intruder has been caught by some searchlight.

Definition 1 3-dimensional Searchlight Scheduling
Problem (3SSP): Given a polyhedron P and a set of
searchlights L, determine if a searching schedule exists
for L which clears P in finite time.

Since we're also concerned with time evaluation, let’s
assume that the angular speed of every searchlight / is
bounded by some constant Ky, i.e. £’s schedules are Lip-
schitz continuous functions with Lipschitz constant K.

Definition 2 3-dimensional Timed Searchlight
Scheduling Problem (3TSSP): Given a polyhedron
P, a set of searchlights L and a time limit T, determine
if a searching schedule exists for L which clears P
within time T .

3 Preliminaries

In this section we state some elementary properties of
3SSP, which also provide a rationale for the choice of our
model. Specifically, our choice to employ line-guards as
opposed to point-guards is supported by strong geomet-
ric facts concerning visibility.

It is well-known (see for example [4]) that the reflex
vertices of a polygon can collectively guard its whole
interior, and this can be proved by inductively splitting
the polygon along the bisectors of reflex angles. On
the other hand, this doesn’t generalize to point-guards
in polyhedra, since Seidel’s polyhedra (see [4]) can’t be
guarded by vertex-guards at all, and actually they can’t
even be guarded by a linear number of point-guards.

However, the splitting argument can be successfully
extended to polyhedra by cutting along reflex edges, also
called notches. In [1] a partitioning algorithm into con-
vex parts is described which is based upon such splitting
technique. It follows that a polyhedron can be guarded
by its notches, i.e. each point in a polyhedron is visible
by at least one point on some notch.

So far, edge-guards in polyhedra acted like the natu-
ral 3-dimensional counterparts of vertex-guards in poly-
gons, while point-guards seemed way too weak to guard
polyhedra. To further pursue this analogy, let’s com-
pare the power of 2-dimensional searchlights and 3-
dimensional searchplanes. Consider the partition we

just described for polygons, and notice that every part
is a convex polygon such that at least one of its vertices
was originally a reflex vertex, while the union of all the
cuts is a planar embedding of a forest graph. Hence, if
searchlights are placed at reflex vertices, they are not
only able to see the whole polygon, but they also have a
successful searching schedule. Align them with the an-
gle bisectors of their respective vertices, and move some
of them one by one in the correct order (determined by
the structure of the forest graph). Every time a search-
light is moved, it sweeps all the area it can see, and
then returns back in place, along the angle bisector. By
a straightforward induction, it can be shown that such
a schedule clears the whole polygon.

Attempting to extend this reasoning to polyhedra
gives rise to several difficulties. As shown in [1], cut-
ting along a notch may split other notches, may fail to
disconnect the polyhedron, may generate new polyhe-
dra with higher genuses, and the cut itself is a polygon
which may have holes. However, we are confident that a
careful analysis of the cut structure will lead to a proof
of the following:

Conjecture 1 The instance (P, N) of 35SP, where N
18 the set of notches of a polyhedron P, has a successful
searching schedule.

Another desirable feature of our searchlights is that
their movement has only one degree of freedom, which
makes for a simple description and analysis of their
schedules. As a consequence, any instance (P, L) of SSP
can be trivially transformed into an instance of 3SSP,
by extruding P to form a prism and converting each
searchlight in L into a maximal straight line parallel to
the prism’s sides.

Observation 1 SSP <p 3SSP.

Notice that not all reasonable models of searchlights im-
mediately enable this reduction: for instance, consider
searchplanes rotating about a point with two degrees of
freedom.

A hardly avoidable downside of our model is that a
searchlight may fail to “disconnect” a polyhedron re-
gardless of its genus, even when placed on its boundary
and aimed at its interior. Hence, most of the sufficient
conditions for searchability obtained in [5] don’t gener-
alize to 3SSP, and in particular the One Way Sweeping
Strategy doesn’t work for arbitrary searchlights. Ex-
plicit counterexamples are readily constructed: Figure 1
depicts two unsearchable instances, whose searchlights
lie on the boundary and can collectively see everything.
However, it is easily proved that no counterexample ex-
ists for instances with only one searchlight.

Observation 2 The instance (P,{¢}) of 3SSP has a
successful searching schedule iff £ can see all P, and lies
on P’s boundary.
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Figure 1: Two unsearchable instances of 3SSP. Thick
lines mark searchlights.

4 NP-hardness of 3TSSP

Next we show a polynomial time reduction from 3SAT
to 3TSSP. Our construction will transform a 3CNF for-
mula ¢ into an orthogonal polyhedron P and a set of
searchlights L lying on P’s edges, each with maximum
angular speed of 90°/sec, such that P can be cleared
by L within 3 seconds iff ¢ is satisfiable.

A link is a thin uncapped parallelepiped, with a short
searchlight in the middle. Clearing a link requires 1
second, and it’s possible iff both ends remain capped by
some external searchplanes. A room is a cube with a
searchlight lying on some edge. Rooms and links can
be attached together to form a chain, in such a way
that the searchlight in each room has links on both its
adjacent faces, as depicted in Figure 2.

Figure 2: Odd-chain made of rooms and links.

If a schedule is going to clear a chain in 3 seconds, it
has to move all the searchlights in every room during
second 2, while during seconds 1 and 3 they have to
remain on their sides, in order to cap the surrounding
links. As a consequence, the links in a chain must be
cleared at second 1 and second 3, alternately. A chain is
called even-chain or odd-chain, depending on the num-
ber of its rooms. Chains will connect variable devices
with the corresponding clause devices.

To represent a boolean variable x, we use a pair of
rooms C, and C, each with a fake link on its left side,
as Figure 3 suggests. The far end of each fake link

is capped, as they’re required for synchronization pur-
poses only. For each occurrence of x in ¢, we attach an
even-chain to the right side of C,, and an even-chain
(resp. odd-chain) to the right side of C if the occur-
rence of x is positive (resp. negative). Both chains will
be connected to the same valve of the proper clause de-
vice, as described below. We’'ll say that variable x is
assigned the value true iff both its searchlights rotate in
the same direction (clockwise or counterclockwise) dur-
ing second 2. Notice that the truth value of a variable
device is well-defined in every schedule that clears it in
3 seconds.

Figure 3: Boolean variable with 2 occurrences.

For each clause in ¢, we construct a clause device,
consisting of a 3-input OR gate and 3 wvalves attached
to it. Each valve corresponds to an occurrence of a
variable, and is then attached to the proper chain pair
coming from that variable.

An OR gate is a cube with 3 small holes and 2 search-
lights, such that the searchlights can simultaneously
close at most 2 holes (see Figure 4). Its clearing time is
1 second, provided that recontamination through holes
is avoided, via external searchplanes.

To valve 1
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Figure 4: 3-input OR gate.

Each hole in an OR gate directly connects to a small
valve, shown in Figure 5. Searchlight A is able to cap
the chain pair and close the hole leading to the OR gate
but, in order to do both, it has to spend 1 second switch-
ing position. Searchlight B always clears the valve no
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matter what A does, provided that the hole remains
closed. The auxiliary fake links force B to move during
second 2 only.

Figure 5: Valve.

This completes the construction. Notice that building
a chain with the correct parity and direction is never
an issue, because 3 rooms and 3 links can be added
to extend a chain without changing the direction of its
end links. Moreover, if the chains are thin enough, the
number of their bends can be bounded by a constant,
while keeping them pairwise disjoint and with rational
vertices. Hence the size of the whole construction is
indeed linear in the size of .

Suppose now that ¢ is satisfiable, and let’s show that
our construction can be cleared in 3 seconds. For each
variable z, the searchlight in C, starts on its right, while
the searchlight in C!, starts on its left (resp. right) if «
is false (resp. true) in the chosen satisfying assignment.
Consider now an occurrence of z, and its corresponding
valve. If the occurrence is satisfied, both links attached
to the valve can be cleared at second 1. So searchlight
A caps the links during second 1, waits for B to move
during second 2 (thus protecting the chains from the
contaminated fake link still uncapped by B), and finally
moves to close the valve during second 3. On the other
hand, if the occurrence of x is not satisfied, A keeps
capping the links and never moves (since they have to
be cleared during seconds 1 and 3, respectively), while
B moves during second 2. Thus, by assumption, in the
end of second 3, each OR gate will have at least one hole
closed by the corresponding valve. The searchlights in
the OR gate keep the remaining 2 holes closed through-
out seconds 1 and 2, and finally the proper searchlight
moves to clear the OR gate during second 3. If a valve’s
hole is initially closed by the OR gate, then the valve
itself is successfully cleared by searchlight B during sec-
ond 2, hence the OR gate can’t be contaminated by the
valve during second 3. If a valve is initially open, then
a small portion of it (the “nook” with the fake links) is
cleared by B at second 2, while the rest is cleared by A
at second 3. Notice also that no recontamination can

ever occur between an OR gate and some auxiliary fake
link in one of its valves, because searchlight A always
separates the two regions.

Conversely, let’s assume by contradiction that ¢ is not
satisfiable, and some searching schedule clears our con-
struction within 3 seconds. As already noticed, every
variable device must be cleared at second 2, while each
link must be cleared at second 1 or 3. By assumption,
in at least one clause device every valve is attached to a
link that is cleared during second 1 and to a link that is
cleared during second 3. While links are being cleared,
searchlight A has to cap them, and it’s too slow to ap-
proach the valve’s hole and come back in place during
second 2. Therefore, the region around the hole must
be cleared by searchlight B, which is allowed to move
only during second 2, because of the fake links it has to
cap. To avoid recontamination while B sweeps the hole,
some searchlight in the OR gate must keep it closed for
€ > 0 seconds. But since there are only 2 such search-
lights for 3 holes, one searchlight has to close 2 holes in
strictly less than 1 second, which is impossible.

This ends the proof of our main result:

Theorem 1 3TSSP is NP-hard, even when restricted
to orthogonal polyhedra with searchlights lying on edges.

5 Conclusions

We have modeled a 3-dimensional version of the Search-
light Scheduling Problem, pointing out its basic features
and proving the NP-hardness of computing the optimal
searching time of a given instance. Besides studying
new solving heuristics, further efforts may be devoted
to proving the hardness of approximation of the opti-
mal searching time, as well as the NP-hardness of 3SSP
with no time constraints.
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