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Existence of zone diagrams in compact subsets of uniformly convex spaces
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Abstract

A zone diagram is a relatively new concept which has
emerged in computational geometry and is related to
Voronoi diagrams. Formally, it is a fixed point of a
certain mapping, and neither its uniqueness nor its exis-
tence are obvious in advance. It has been studied by sev-
eral authors, starting with T. Asano, J. Matoušek and
T. Tokuyama, who considered the Euclidean plane with
singleton sites, and proved the existence and unique-
ness of zone diagrams there. We announce the exis-
tence of zone diagrams with respect to finitely many
pairwise disjoint compact sites contained in a compact
and convex subset of a uniformly convex normed space.
The proof is based on the Schauder fixed point theorem,
the Curtis-Schori theorem regarding the Hilbert cube,
and on recent results concerning the characterization of
Voronoi cells as a collection of line segments and their
geometric stability with respect to small changes of the
corresponding sites. Along the way we obtain interest-
ing and apparently new properties of Voronoi cells.

1 Introduction

Background: A zone diagram is a relatively new con-
cept related to geometry and fixed point theory. In
order to understand it better, consider first the more
familiar concept of a Voronoi diagram. In a Voronoi di-
agram we start with a set X, a distance function d, and
a collection of subsets (Pk)k∈K in X (called the sites
or the generators), and with each site Pk we associate
the k-th Voronoi cell, that is, the set Rk of all x ∈ X
the distance of which to Pk is not greater than its dis-
tance to the union of the other sites Pj , j 6= k. On the
other hand, in a zone diagram we associate with each
site Pk the set Rk of all x ∈ X the distance of which
to Pk is not greater than its distance to the union of
the other sets Rj , j 6= k. Figures 1 and 2 show the
Voronoi and zone diagrams, respectively, corresponding
to the same ten singleton sites in Euclidean plane. At
first sight, it seems that the definition of a zone diagram
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Figure 1: A Voronoi diagram of 10 point sites in a
square in the Euclidean plane.

Figure 2: A zone diagram of the same 10 points as in
Figure 1.

is circular, because the definition of each Rk depends on
Rk itself via the definition of the other cells Rj , j 6= k.
On second thought, we see that, in fact, a zone dia-
gram is defined to be a fixed point of a certain mapping
(called the Dom mapping), that is, a solution of a cer-
tain equation. While the Voronoi diagram is explicitly
defined and, hence, its existence and uniqueness are ob-
vious, neither the existence nor the uniqueness of a zone
diagram are obvious in advance. As a result, in addi-
tion to the problem of finding algorithms for computing
zone diagrams, we are faced with the more fundamental
problem of establishing their existence (and uniqueness)
in various settings, and with the problem of reaching a
better understanding of this concept.

The concept of a zone diagram was first defined and
studied by T. Asano, J. Matoušek and T. Tokuyama
[3] (see also [2]), in the case where (X, d) was the Eu-
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clidean plane, each site Pk was a single point, and all
these (finitely many) points were different. They proved
the existence and uniqueness of a zone diagram in this
case, and also suggested a natural iterative algorithm
for approximating it. Their proofs rely heavily on the
above setting.

Later, the authors of [19] considered general sites in
abstract spaces, called m-spaces, in which X is an arbi-
trary nonempty set and the “distance” function should
only satisfy the condition d(x, x) ≤ d(x, y) ∀x, y ∈ X
and can take any value in the interval [−∞,∞]. They
introduced the concept of a double zone diagram, and
using it and the Knaster-Tarski fixed point theorem,
proved the existence of a zone diagram with respect to
any two sites in X. They also showed that in general
the zone diagram is not unique. In a recent work by
K. Imai, A. Kawamura, J. Matoušek, Y. Muramatsu
and T. Tokuyama [12], the existence and uniqueness of
the zone diagram with respect to any number of gen-
eral positively separated sites in the n-dimensional Eu-
clidean space Rn were announced. The proof is based
on results from [19] and on an elegant geometric argu-
ment specific to Euclidean spaces. Very recently some
of these authors have generalized this result to finite di-
mensional normed spaces which are both strictly convex
and smooth [14].

We note that zone diagrams are closely related to the
concepts of trisector and k-gradation; see [1, 2, 4, 7, 13]
for more details.
Our contribution: In this extended abstract we an-
nounce the existence of zone diagrams with respect to
finitely many pairwise disjoint compact sites contained
in a compact and convex subset of a (possibly infi-
nite dimensional) uniformly convex normed space (full
proofs can be found in [15]). The proof is based on the
Schauder fixed point theorem, the Curtis-Schori theo-
rem regarding the Hilbert cube, and on recent results
concerning the characterization of Voronoi cells as a
collection of line segments and their geometric stabil-
ity with respect to small changes of the corresponding
sites. Along the way we obtain interesting results re-
garding Voronoi cells in uniformly convex spaces. Al-
though Voronoi diagrams have been the subject of ex-
tensive research during the last decades [5, 16], this re-
search has been mainly focused on Euclidean finite di-
mensional spaces (in many cases just R2 or R3), and
it seems that our results are new even for R2 with a
non-Euclidean norm.

It may be of interest to compare our main existence
result with the recent existence result described in [14].
On the one hand, our result is weaker than that result,
since we only prove the existence of a zone diagram in
a compact and convex set, while in [14] uniqueness is
also proved and the setting is the whole space Rn. In
addition, it seems that some of the arguments in [14],

although only formulated for finitely many sites, can be
extended to infinitely many, positively separated closed
sites. On the other hand, our result is stronger in the
sense that we allow infinite dimensional spaces and we
do not require the smoothness of the norm. As a mat-
ter of fact, the counterexamples mentioned in [14] show
that uniqueness does not necessarily hold if the norm is
not smooth. In any case, the strategies used for proving
these two results are completely different: in [14] the au-
thors use the existence of double zone diagrams (based
on the Knaster-Tarski fixed point theorem) and sev-
eral geometric arguments, and here we use the Schauder
fixed point theorem, the Curtis-Schori theorem regard-
ing the Hilbert cube, and several general results about
Voronoi cells in uniformly convex normed spaces.

2 Definitions and Notation

We consider a compact and convex set X 6= ∅ in a uni-
formly convex normed space (X̃, | · |), real or complex,
finite or infinite dimensional. The induced metric is
d(x, y) = |x− y|.

Definition 1 Given two nonempty sets P,A ⊆ X, the
dominance region dom(P,A) of P with respect to A is
the set of all x ∈ X the distance of which to P is not
greater than its distance to A, that is,

dom(P,A) = {x ∈ X : d(x, P ) ≤ d(x, A)}.

Here d(x,A) = inf{d(x, a) : a ∈ A}.

Definition 2 Let K be a set of at least 2 elements
(indices), possibly infinite. Given a tuple (Pk)k∈K of
nonempty subsets Pk ⊆ X, called the generators or the
sites, the Voronoi diagram induced by this tuple is the
tuple (Rk)k∈K of nonempty subsets Rk ⊆ X, such that
for all k ∈ K,

Rk = dom(Pk,
⋃
j 6=k

Pj)

= {x ∈ X : d(x, Pk) ≤ d(x, Pj) ∀j 6= k, j ∈ K}.

In other words, each Rk, called a Voronoi cell, is the set
of all x ∈ X the distance of which to Pk is not greater
than its distance to the union of the other Pj, j 6= k.

Definition 3 Let (X, d) be a metric space and let K be
a set of at least 2 elements (indices), possibly infinite.
Given a tuple (Pk)k∈K of nonempty subsets Pk ⊆ X, a
zone diagram with respect to that tuple is a tuple R =
(Rk)k∈K of nonempty subsets Rk ⊆ X such that

Rk = dom(Pk,
⋃

j 6=k

Rj) ∀k ∈ K.

In other words, if we define Xk = {C : Pk ⊆ C ⊆
X}, then a zone diagram is a fixed point of the mapping
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Dom :
∏

k∈K

Xk →
∏

k∈K

Xk, defined by

Dom(R) = (dom(Pk,
⋃

j 6=k

Rj))k∈K .

We now recall the definition of strictly and uniformly
convex spaces.

Definition 4 A normed space (X̃, | · |) is said to be
strictly convex if for all x, y ∈ X̃ satisfying |x| = |y| = 1
and x 6= y, the inequality |(x+y)/2| < 1 holds. (X̃, |·|) is
said to be uniformly convex if for any ε ∈ (0, 2], there ex-
ists δ ∈ (0, 1] such that for all x, y ∈ X̃, if |x| = |y| = 1
and |x− y| ≥ ε, then |(x + y)/2| ≤ 1− δ.

A uniformly convex space is always strictly convex, and
if it is also finite dimensional, then the converse is true
too. The n-dimensional Euclidean space Rn, or more
generally, inner product spaces, the sequence spaces `p,
the Lebesgue spaces Lp(Ω), p ∈ (1,∞), are all examples
of uniformly convex spaces. The plane R2 endowed with
the max norm |·|∞ is a typical example of a space which
is not uniformly convex, since its unit sphere contains
line segments. More information regarding uniformly
convex spaces can be found, in, e.g., [6, 9].

We finish this section by recalling three definitions of
a topological character.

Definition 5 The Hilbert cube I∞ is the set I∞ =∏∞
n=1[0, 1/n] as a topological space the topology of which

is induced by the `2 norm, or, equivalently, by the prod-
uct topology.

Definition 6 A topological space X is said to be locally
(path) connected if for any x ∈ X and any open set U
containing x, there exists a (path) connected open set
V ⊆ U such that x ∈ V .

Definition 7 Let (X, d) be a metric space. Given two
nonempty sets A1, A2 ⊆ X, the Hausdorff distance be-
tween them is defined by

D(A1, A2) = max{ sup
a1∈A1

d(a1, A2), sup
a2∈A2

d(a2, A1)}.

Recall that the Hausdorff distance is different from the
usual distance between two sets which is defined by
d(A1, A2) = inf{d(a1, a2) : a1 ∈ A1, a2 ∈ A2}.

3 The main result and an outline of its proof

In this section we outline the proof of our main result,
stated as follows:

Theorem 8 There exists a zone diagram with respect
to finitely many pairwise disjoint compact sites in
any compact and convex subset of a uniformly convex
normed space.

The idea of the proof is to find a certain space Y home-
omorphic to the Hilbert cube I∞ (Y ≈ I∞ for short)
such that Dom(Y ) ⊆ Y and Dom is continuous on
Y . Now, if h : I∞ → Y is a homeomorphism, then
f = h−1 ◦Dom ◦ h : I∞ → I∞ is a continuous mapping
which maps a compact and convex subset of `2 into it-
self, so the Schauder fixed point theorem [20] (see also
[10, p. 119] and Theorem 9 below) ensures that f has
a fixed point q ∈ I∞. By taking R = h(q), we see that
R is a fixed point of Dom, that is, R is a zone diagram.
In order to apply this idea, one has to find the set Y , to
prove that it is homeomorphic to I∞, and to prove the
continuity of Dom on Y . It has turned out that even in
the case of singleton sites in a square in the Euclidean
plane the proof is not obvious (the main difficulty is to
prove the continuity of Dom), and, in fact, such a proof
has never been published.

The above strategy was suggested by the first author,
and was briefly mentioned in [3, p. 1188]. The space
Y was taken to be

∏
k∈K Yk, where K was finite, Yk

was {C : Pk ⊆ C ⊆ Qk and C is closed} and Qk was
the intersection of the k-th Voronoi cell with X (the
square). Since each site Pk is taken to be a singleton,
it follows that each Qk is actually convex, so, in par-
ticular, it is a connected and locally connected compact
metric space. Since, in addition, Pk 6= Qk, it follows
from the theorem of D. Curtis and R. Schori [8, Theo-
rem 5.2] stated below (see also [11, p. 91]) that Yk, as
a metric space endowed with the Hausdorff metric, is
homeomorphic to I∞. The topology on Y is the prod-
uct topology, induced by the uniform Hausdorff metric
D̃((Sk)k∈K , (S′k)k∈K) = max{D(Sk, S′k) : k ∈ K}, so
Y , as a finite product of spaces homeomorphic to I∞,
is also homeomorphic to I∞.

Theorem 9 (Schauder) Let X be a nonempty convex
and compact subset of a normed space. If f : X → X is
continuous, then it has a fixed point.

Theorem 10 (Curtis-Schori) Let X be a Peano con-
tinuum, that is, a connected and locally connected com-
pact metric space, and let P ⊆ X, P 6= X be closed and
nonempty. Let 2X

P = {C : P ⊆ C ⊆ X, C is closed},
endowed with the Hausdorff metric. Then 2X

P ≈ I∞.

In the general case, the application of the above strat-
egy, and, in particular, the verification of the hypotheses
of Theorem 10, are not a simple task, and they require
several additional tools related to dominance regions,
such as their characterization as unions of line segments,
and their stability with respect to small perturbations
of the relevant sets. These results have recently been
established in [17, 18], and their proofs can be found
there. Using these results, we first prove the existence
of a zone diagram with respect to finite sites, and then,
approximating compact sets by finite subsets of them
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Figure 3: A zone diagram of 3 sites in a square in
(R2, `p), p = 3.14159, each site consisting of 3 points.

and applying a continuity argument, we extend this ex-
istence result to any compact sites. Along the way we
obtain several interesting properties of Voronoi cells in
uniformly convex spaces: if d(p, A) > 0, then dom(p, A)
is path connected and locally path connected, and if,
in addition, p is in the interior of the universe X, then
dom(p, A) is homeomorphic to a convex set.

4 Concluding remarks

In this extended abstract we have mainly focused on
discussing the concept of zone diagrams and on the fun-
damental problem of proving their existence. It may
be of interest to ask whether there exist methods for
approximating them. It turns out that there is such a
method, and it is based on a new and general algorithm
for computing Voronoi diagrams [17, 18]. As a matter
of fact, Figures 2 and 3 were obtained by using it. See
[18] for more details.
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