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Abstract

Given a set B of n blue points in general position, we
say that a set of red points R blocks B if in the Delaunay
triangulation of B ∪ R there is no edge connecting two
blue points. We give the following bounds for the size
of the smallest set R blocking B: (i) 3n/2 red points
are always sufficient to block a set of n blue points,
(ii) if B is in convex position, 5n/4 red points are always
sufficient to block it, and (iii) at least n − 1 red points
are always necessary, and there exist sets of blue points
that require at least n red points to be blocked.

1 Introduction

Proximity graphs were originally defined to capture dif-
ferent notions of proximity in a set of points [7]. A par-
ticular proximity graph in a set of points S is defined by
assigning to every pair of points in S a region (or family
of regions). Then, the edge pq is part of the graph if and
only if at least one of the regions corresponding to the
pair is empty of points of S. Examples of such graphs
are the Gabriel graph, the relative neighborhood graph,
and the Delaunay triangulation.

Recently, the notion of proximity graphs has been ex-
tended with the concept of witness proximity graphs [2,
3, 4]. In this generalized setting, we have a second set of
points W , the witnesses, which account for the existence
of an edge between two points of S.

Motivated by the study of the witness Delaunay
graph, the following stabbing problem is considered
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∗∗Departamento de Matemáticas, Universidad de Alcalá,
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in [3]. Let S be a set of n points in general position
(no three points are collinear, and no four are cocircu-
lar) and let D be the set of Delaunay circles of S, i.e.,
circles passing through at least two points of S with no
point of S in the interior. What is the smallest number
of points needed to pierce all the circles in D? In [3]
it is stated that 2n− 2 points are always sufficient and
that sometimes n points are necessary. Similar prob-
lems have been studied from an algorithmic point of
view in [1].

The following formulation, which we are using in the
rest of the paper, is equivalent: Let B be a set of n
blue points. We say that a set of red points R blocks
B if in the Delaunay triangulation of B ∪R there is no
edge connecting two blue points. What is the size of the
smallest set blocking a set of n blue points?

We show the following results:

• In general, 3n/2 red points are always sufficient to
block B.

• If B is in convex position, then 5n/4 red points are
always sufficient to block B.

• For every set of n blue points, at least n − 1 red
points are always needed to block it, and there are
sets that require at least n red points.

Recently, de Berg et al. [5] proved NP-hardness of a
related problem: Given a set of red and blue sites, what
is the minimum number of blue points that have to
be removed so that the Voronoi cells of the red points
form a connected region?

Throughout this paper, we denote the Delaunay tri-
angulation of S with DT (S), the Voronoi diagram of S
with V (S), and the Voronoi region of point p ∈ S in
V (S) with Vp(S).

2 An upper bound for general point sets

We start with a constructive approach for blocking gen-
eral point sets that utilizes the duality between Delau-
nay triangulations and Voronoi diagrams.

Theorem 1 Let B be a set of n blue points in general
position. There always exists a set R of at most 3n/2
red points that blocks B.
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Proof. Let I be the biggest independent set in DT (B),
and C = B \ I its complement. Because the triangu-
lation is 4-colorable, we know that C ≤ 3n/4. We are
going to show that B can be blocked by adding two red
points in a close neighborhood of each point in C.

First, for each p ∈ C we choose a point η(p) ∈ C
among the neighbors of p in DT (B). This is always
possible, because if pqr is a triangle in DT (B), then it
cannot happen that q and r are both in I.

Then, for each p ∈ C we choose a point p1 (not
in B) in the interior of the Voronoi cell Vp(B), and with
the following conditions: (i) The ray p1p intersects the
boundary of Vp(B) in the Voronoi edge of V (B) which
is separating Vp(B) from Vη(p)(B). Let pb be this point
of intersection. (ii) In the case in which q = η(p) and
p = η(q), p1 and q1 have to be chosen in such a way
that pb 6= qb (see Figure 1).
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Figure 1: Isolating a blue point by placing two red
points in its Voronoi cell.

Now we assign a segment ep to each point p such that
ep is centered at pb and contained in the edge of V (B)
separating the Voronoi regions of p and η(p). If q = η(p)
and p = η(q), we choose the intervals ep and eq small
enough to be disjoint.

Next, we add two red points in Vp(B) in the following
way. Consider the circle that is centered at p1 and passes
through p, and place the red points at the intersections
of this circle with the line segments defined by p1 and
the endpoints of ep. Note that p1 does not belong to
our set of red points.

Once we have done this for every point p ∈ C, we
claim that in the Voronoi diagram of the resulting set no
pair of blue points have adjacent regions. The only area
where p could be closer to some blue point than (one of)
the two shielding red points (constructed for it) is inside
the wedge defined by the bisectors of p and these two
red points. The apex of the wedge is p1 ∈ Vp(B), and
only point q = η(p) has the possibility to be a Voronoi
neighbor for p. But by construction, the intervals ep
and eq are disjoint, so this does not happen. �

3 An upper bound for convex sets - coloring combi-
natorial triangulations

For the special case of point sets in convex position
we improve our general upper bound by translating the
problem into a combinatorial setting.

We call a triangle of a triangulation an ear if it con-
tains a vertex (the tip) which is not incident to inner
edges. We call a triangle an inner triangle if it consists
solely of inner edges.

Considering the properties of the Delaunay triangu-
lation, we propose the following two simple operations
to block Delaunay edges. Blocking a single edge is done
by placing a red point arbitrarily close to the center of
the edge. For inner edges this can be done on any of its
two sides, and for edges of the convex hull the red point
has to be placed slightly outside the convex hull. Block-
ing a vertex p is done by placing two red points outside
the convex hull, one at each incident convex hull edge,
and arbitrarily close to p (such that the two red points
are Delaunay neighbors). This way all Delaunay edges
incident to p are blocked.

Reconsidering the presented blocking operations we
transform the whole setting into a combinatorial frame-
work. We call blocking a single edge coloring an edge
with cost 1, and blocking a vertex coloring a vertex with
cost 2, where the latter also colors all incident edges.
Thus, our task can be rephrased as coloring all edges of
a given triangulation with minimal cost. Let C(n) de-
note the maximum minimal cost over all sets of n points
in convex position. Clearly, an upper bound on the oc-
curring cost is an upper bound on the number of red
points needed in the original setting, while the inverse
statement is not true in general. In fact, we can apply
our combinatorial setting to any triangulation, not only
to the Delaunay triangulation.

Figure 2: An (n, a, k)-cut and the retriangulated subset.

An (n, a, k)-cut of a triangulation T of a set of n points
is a separation of the n points into two disjoint groups
A and B with |A| = a and |B| = n− a, plus a coloring
of A with cost k such that any edge of T incident to a
point in A is colored, see Figure 2.

Lemma 2 If for a triangulation T of a convex n-gon,
there exists an (n, a, k)-cut, then the cost of coloring T
is at most C(n− a) + k.
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Proof. Let A and B be the two sets as defined for the
(n, a, k)-cut. We use the coloring of A given by the cut
and remove all colored vertices and edges. We com-
plete the remaining graph of B to a full triangulation
of the convex set B by (arbitrarily) retriangulating the
holes induced by removing A (cf. Figure 2, right), and
color this triangulation of B with cost at most C(n−a).
Combining the two colorings of A and B (where we can
ignore colored edges of B which are not part of T ), we
obtain a coloring of T with cost at most C(n−a)+k. �
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Figure 3: The two cases for a convex set: removing
an ear (left), and removing an inner triangle with two
incident ears (right).

Theorem 3 C(n) ≤ 5n
4 .

Proof. We prove the statement by induction on the
number n of vertices. For the induction base it is
straightforward that for n ≤ 3 we have C(n) ≤ n. So
assume the statement is true for any set of size n′ < n,
and consider a triangulation T of n points. We distin-
guish two cases.

Case 1. Assume that there exists an ear of T with
tip p such that a neighbor q of p (neighborhood is with
respect to the convex hull) has precisely one incident
inner edge, see Figure 3(left). We color the two other
neighbors p′ and q′ of p and q, respectively, as well as the
edge pq. With A = {p, q, p′, q′} this induces an (n, 4, 5)-
cut of T . By Lemma 2 we have C(n) ≤ 5 +C(n− 4) ≤
5 + 5(n−4)

4 = 5n
4 , where the last inequality follows from

the induction.
Case 2. Otherwise, all neighbors of the tip of an

ear are incident to at least two inner edges. This is
equivalent to the fact that all ears share an inner edge
with an inner triangle. As in any triangulation (of a
convex set) the number of ears is larger than the number
of inner triangles by two (this follows by considering
the dual tree), there exists at least one inner triangle ∆
which is incident to two ears. We color the three vertices
of ∆, see Figure 3(b). The tips of the two ears incident
to ∆ together with the three vertices of ∆ form our
set A. As A has cardinality 5, this induces an (n, 5, 6)-
cut of T , and similar as before we have C(n) ≤ 6 +
C(n− 5) < 5n

4 . �

Corollary 4 For any set B of n blue points in con-
vex position, (the Delaunay triangulation of) B can be
blocked by at most 5n

4 red points.

4 Lower Bounds

In this section we provide a general lower bound on
the number of points needed to block any given set,
again using independent vertices. In addition, we apply
a method from economics to show that there exist sets
requiring n points.

Lemma 5 For every point set S with n points, the
number of independent vertices in the Delaunay trian-
gulation DT (S) is at most bn+1

2 c.

Proof. It is known that every Delaunay triangulation
contains a perfect matching of its vertices [6]. Consider
such a perfect matching M , and an independent set I.
Then for every edge in M , at most one of its endpoints
can be in I. If n is odd, then the non-matched point
can be in I as well. �

Note that this is a special property of the Delaunay
triangulation, as there exist sets of n points, which can
be triangulated in a way that the triangulation has an
independent set of size as much as 2n−2

3 . For example,
take a set of k red points and triangulate it arbitrarily.
Place one blue point in the interior of each red triangle.
Further, place one blue point outside but close to each
convex hull edge. Complete the full set of n = 3k − 2
points to a triangulation with k red and 2k−2 indepen-
dent blue points.

Theorem 6 At least n− 1 red points are always neces-
sary to block a set B of n blue points.

Proof. Assume that the red point set R, |R| = m,
blocks B. Then the joint Delaunay triangulation
DT (B∪R) does not contain any edge between two blue
vertices, which implies that B is an independent set in
DT (B∪R). Thus, by Lemma 5, we have n ≤ bn+m+1

2 c,
and consequently m ≥ n− 1. �

Proposition 7 For every n ≥ 3, there exist point sets
B with |B| = n such that at least n red points are nec-
essary to block B.

Proof. Consider a set of n coins that are placed in a
way that every coin touches exactly two other coins (i.e.,
they form a set of cycles), which gives n touching points
in total. Let these be the n blue points of B. Then for
each coin c, the connection between its two touching
points is an edge in DT (B) (because c does not contain
any other blue point). These edges form a set of (not
necessarily convex) cycles, see Figure 4. For blocking B
we need to place at least one red point on each coin. As
the coins are pairwise disjoint, we need at least n red
points. �



22nd Canadian Conference on Computational Geometry, 2010

Figure 4: Euros proving a lower bound of n: the cycles
induced by the coins are drawn solid. The dashed edges
complete the Delaunay triangulation.

5 Discussion

To block a set B of n blue points we have shown that
3n/2 red points are sufficient for general sets, and 5n/4
red points are sufficient for sets in convex position. Note
that both proofs for the upper bounds are constructive,
directly providing an algorithm. Moreover, we know
that for any set with n blue points we need at least
n− 1 red points, and that there exist sets which require
n red points.

So far we have not been able to construct a set that
needs more than n red points to be blocked, and to the
best of our knowledge, no example is known that can in
fact be blocked with only n − 1 points. Thus we state
the following conjecture.

Conjecture 1 For any set B of n blue points in convex
position, n red points are necessary and sufficient to
block B.

In fact, from what is currently known, the conjecture
might be true even for general point sets.

Independently, the algorithmic issue of finding a min-
imal set of blocking red points arises as a natural ques-

tion for future work. This can also be seen in the light
of the NP-hardness result of [5].
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