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Abstract

A dominating set of a graph G = (V,E) is a subset
V ′ ∈ V of the nodes such that for all nodes v ∈ V , ei-
ther v ∈ V ′ or a neighbor u of v is in V ′. Several routing
protocols in ad hoc networks use a dominating set of the
nodes for routing. None of the existing algorithms has
a constant approximation factor in a constant number
of rounds in 3D. In this paper, we use the nodes’ geo-
metric locations to propose the first local, constant time
algorithm that constructs a Dominating Set and Con-
nected Dominating Set of a Unit Disk Graph (UDG)
in a 3D environment. The approximation ratios of our
algorithms are given.

1 Introduction

Wireless ad hoc and sensor networks are most of-
ten modeled by Unit Disk Graphs [8], abbreviated
by UDGs, a geometric graph G = (V,E) in which
the vertex set V is a set of n points in Rd, where
d is the dimensions, and the edge set E consists of
m pairs from V . Let dist(u, v) be the Euclidean
distance between the nodes u and v: dist(u, v) =√

(ux − vx)2 + (uy − vy)2 + (uz − vz)2. Two nodes u
and v are considered adjacent if the Euclidean distance
between them is less than or equal to 1 unit. The neigh-
borhood N1(v) of a vertex v ∈ V is the set of all ver-
tices adjacent to v, i.e., N1(v) = {u|uv ∈ E}. A path
from the node u1 to the node u2 is a sequence of nodes
u1 = v1, v2, ..., vk = u2, such that vi and vi+1 are neigh-
bors. The length of the path is the sum of the number of
edges (i.e., number of hops) along the path. For a node
v, we define N2(v) and N3(v) to be the set of nodes
that are 2 and 3 hops away from v respectively.

A subset V ′ of V is called dominating if every vertex
from V − V ′ is adjacent to some node in V ′. A dom-
inating set is called a connected dominating set (CDS)
if the subgraph P (G) induced by V ′ is connected. The
smallest subset of vertices that is both connected and
dominating is called a minimum connected dominating
set (MIN-CDS). A subset of vertices in a graph G is an
independent set if no two vertices are connected by an
edge. An independent set is maximal (MIS) if it cannot
be extended by the addition of any other vertex from
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the graph without violating the independence property
[7].

A subgraph of G, P (G) is called a t-spanner of G if
the length of the shortest path between any two nodes in
P (G) is not more than t times longer than the shortest
path connecting them in G, where t is known as the
stretch factor.

In general, the main characteristics of mobile comput-
ing are low bandwidth, mobility, and low power. Due
to these characteristics, routing in ad hoc wireless net-
works requires fast convergence and low communication
overhead. Hence, routing information has to be local-
ized to adapt quickly the network topological changes.
Localized CDS-based routing can be a solution to this
kind of network environment. The main advantage of
CDS-based routing is that it centralizes the whole net-
work into a relatively small connected dominating set
sub network, which means only gateway hosts maintain
routing information, so that as long as network topo-
logical changes do not affect this sub network and there
is no need to recalculate routing tables. Clearly, the
efficiency of this approach depends largely on the pro-
cess of finding the dominating sets and the size of the
corresponding sub-networks [13]. Finding a MIN-CDS
is NP-complete in general even for UDG’s [11].

One of the major assumptions made by many rout-
ing algorithms is assuming that nodes are deployed in
a 2D plane. Such an assumption is invalid in real life
scenarios and hence these algorithms cannot be applied
in many situations. Some applications of 3D networks
arise: (1) Building networks where nodes are located
on different floors. (2) Irregular terrains like mountains
and hills leaves the nodes lying on surfaces embedded
in 3D. (3) Underwater networks that perform ocean col-
umn monitoring. (4) Space exploration where wireless
sensor networks will play an important role in plane-
tary explorations. A rover functioning as a base station
collects measurements and relays aggregated results to
an orbiter. The transition from 2D to 3D is not always
easy, since many problems in 3D are significantly harder
than their 2D counterparts.

A distributed algorithm is called local if each node
of the network only uses information obtained uniquely
from the nodes located no more than a constant (inde-
pendent of the size of the network) number of hops from
it. Thus, during the algorithm, no node is ever aware of
the existence of the nodes of the network further away
than this constant number of hops.



22nd Canadian Conference on Computational Geometry, 2010

Several algorithms have been previously proposed to
construct an independent dominating set and a CDS.
But none of these algorithms [3, 4, 5, 6, 9, 12] has the
following 3 characteristics: (1) can be constructed in a
constant time (local according to the definition above),
(2) has a constant approximation bound and (3) works
in a 3D environment.

In this paper we propose the first local algorithms
that construct an independent dominating set (IDS) and
a CDS of a Unit Disk Graph (UDG) in a 3D environ-
ment (also termed a Unit Ball Graph). The new algo-
rithms have a constant time complexity and approxima-
tion bounds that are completely independent of the size
of the network. In this paper we assume the following:
(1) Nodes are static or can be viewed as static during
a reasonable period of time. (2) Each node knows the
geometric location of all its neighbors. (3) In the com-
munication model, a node can send a message to all its
neighbors and can receive a message from one of them
at a time.

The rest of the paper is organized as follows. We
present a tiling system of the 3D space needed in our
algorithms in Section 2. In Section 3, we introduce our
local algorithm for IDS based on this tiling system and
give an upper bound on its’ size. In Section 4, we de-
scribe a local algorithm for generating a connected dom-
inating set. We conclude our paper in Section 5.

2 Tiling System

In this section we present a truncated octahedron tiling
system of the 3D space to assign to each node a class
number depending on the position of the node within
the tiling system. Then, based on this tiling classifi-
cation system, we present generalizations of the algo-
rithms from [10] for constructing dominating sets and
CDSs in 3D.

Consider a truncated octahedron of unit diameter as
shown in Figure 1 which consists of 14 faces, 6 squares
of edge length equal to α, and 8 hexagons of edge length
equal to α. Since the truncated octahedron has a diam-
eter equal to 1, then α = 1√

10
.

The tiling system is based on a two level subdivision
of the three dimensional space. At the highest level,
the space is tiled with identically shaped tiles that fill
the entire space, with no gaps or overlaps. Each tile
used in our tiling system consists of 65 truncated octa-
hedra which occupy the entire volume of the tile with
no gaps or overlaps. Each truncated octahedron in the
tile represents one class which has a unique integer. For
any truncated octahedron only faces 1, 2, 3, 4, 5, 6 and 7
belong to it, see Figure 1. In other words, if a node lo-
cated exactly on the shared face between two truncated
octahedra T1 and T2, the node is considered of class 1 if
according to T1 this face is 1, 2, 3, 4, 5, 6 or 7 otherwise

Figure 1: Unit diameter truncated octahedron, the faces
labeled 1, 2, 3, 4, 5, 6, 7 belong to the class represented by
this truncated octahedron.

it will be considered to be of class 2. Assuming that
the first truncated octahedron, class 1, we will call this
class as the center class, is centered at the coordinates
(x1, y1, z1), i.e. the z-axis passes through the center of
face 1, the x-axis passes through the center of the edge
between face 5 and the face opposite to face 2, and y-
axis passes through the center of the edge between face
4 and the face opposite to face 3. We will call this orien-
tation the centering orientation, the coordinates of the
centers of the classes from 2 to 65 are not shown here
because of the space limitation. They all have the same
orientation as class 1. See Figure 2 for an example of
the tile used, showing the placement of the truncated
octahedra in the tile with the associated classes labels.

Assume that the tiling starts by placing the center of
one tile, Tj , at the coordinate (x1, y1, z1), with orienta-
tion equal to the centering orientation. To cover all the
faces of Tj we need 14 other adjacent tiles that are in
contact with Tj in the positions summarized on Table
1. Each tile has the same orientation as Tj . It is clear
that any point can calculate locally its class number by
determining to which tile and corresponding truncated
octahedron it belongs. In the following we prove some
properties of our space tiling system.

Figure 2: The tile used in the tiling system divided
into 65 truncated octahedra of diameter 1 and the class
numbering associated with the truncated octahedra.

Lemma 1 In the 3D space tiling system above, any two
points that are of the same class number, but belong
to two different truncated octahedra, are at Euclidean
distance greater than 2.
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Table 1: Coordinates of the 14 tiles around Tj , with
α = 1√

10
.

Tj (x1, y1, z1)

Tj1 (x1, y1, z1 − 10α
√

2)

Tj2 (x1, y1, z1 + 10α
√

2)

Tj3 (x1 + 6α, y1 + 4α, z1 + 5α
√

2)

Tj4 (x1 + 6α, y1 + 4α, z1 − 5α
√

2)

Tj5 (x1 − 4α, y1 + 6α, z1 + 5α
√

2)

Tj6 (x1 − 4α, y1 + 6α, z1 − 5α
√

2)

Tj7 (x1 − 6α, y1 − 4α, z1 + 5α
√

2)

Tj8 (x1 − 6α, y1 − 4α, z1 − 5α
√

2)

Tj9 (x1 + 4α, y1 − 6α, z1 + 5α
√

2)

Tj10 (x1 + 4α, y1 − 6α, z1 − 5α
√

2)

Tj11 (x1 + 10α, y1 + 2α, z1)

Tj12 (x1 + 10α, y1 − 2α, z1)

Tj13 (x1 − 10α, y1 + 2α, z1)

Tj14 (x1 − 10α, y1 − 2α, z1)

Proof. (see [1] for all lemmas and theorems
proofs). �

In our initial study of tiling the 3D space, we used a
cube of unit diameter as a cell (class) instead of a trun-
cated octahedron. We found that each tile would need
at least 125 cubes to guarantee that the points with the
same class number in different tiles are separated by a
distance greater than 2. Compared to using a truncated
octahedron, this number of cubes would substantially
increase the constant number of rounds required for the
algorithms in Sections 3 and 4.

3 A Local Algorithm For 3D Independent Dominat-
ing Sets (3D-LIDS)

Using the space partition described in the previous sec-
tion, each node can determine its class number locally
(using a constant number of arithmetic operations). Be-
cause the nodes are aware of the locations of all their
neighbors, using the the periodic hello messages, so they
can also calculate the class number of each neighbor.
It is clear that the nodes that are in same truncated
octahedron are neighbors because the diameter of the
truncated octahedron is 1.

Our local construction of the dominating sets is based
on a similar algorithm proposed by Czyzowicz et al. [10]
for 2D. In this algorithm the dominator node m can be
chosen according to different heuristics. I.e., the node
with the highest degree; the node with the maximum
power-level, if the power saving is an important issue
for the algorithm; or the node closest to the center of
the truncated octahedron. (This latter heuristic is used
in our algorithm description).

Let Tx be the truncated octahedron that contains the
node x. Each node x independently does one of the

following depending on its class number and two hop
information:

1. If x is of class 1, then a node m closest to the center
of Tx in the same truncated octahedron (Tx) will
be designated as a dominator.

2. If x is of class other than 1, using the information
about its’ neighbors, x defines a set S1(x) of all
nodes in the same truncated octahedron that have
no neighbor of lower class, and then chooses from
S1(x) a node m closest to center of Tx to be a dom-
inator.

3. If x is of class other than 1, and the set S1(x) is
empty, then x requests from every neighbor i of
lower class number to run the algorithm if not al-
ready running. When all nodes in Tx finish their
calculations, node m from Tx that is not dominated
and closest to the center of Tx becomes a domina-
tor.

When the node finishes its calculation, it informs all
its neighbors that the dominator selection is complete
in its truncated octahedron. This algorithmns is local
since the number of classes is finite.

Before we bound the size of the independent domi-
nating set that resulted from 3D-LIDS, we will describe
some of its properties. Let Dom be the set of dominator
nodes that results from applying 3D-LIDS on each node
in V .

Lemma 2 The selection of a dominator in a truncated
octahedron of Class i by 3D-LIDS depends only on the
nodes that are at most i − 1 hops away from the nodes
in the given truncated octahedron.

Lemma 2 proves that the 3D-LIDS is a local algorithm
because it terminates in a constant number of steps.
The 2D versions of the following two lemmas are proved
in [10], and the 3D versions of these lemmas are included
here for completeness.

Lemma 3 Let G be a connected UDG. Dom is a dom-
inating set of G.

Lemma 4 The Euclidean distance between any two
nodes of Dom is more than one. Thus Dom is an in-
dependent set of G.

Lemma 5 For any dominator node u ∈ Dom, there is
at least another dominator v ∈ Dom such that the hop
distance between them is at most 3.

Lemma 6 For any node u, the number of dominators
inside the sphere centered at u with a radius of k units
is bounded by a constant ηk, where ηk =

4
3 π(k+0.5)3

4
3 π(0.5)3

.
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Theorem 7 Let G = UDG(V,E) be a unit disk graph
and Dom be a set of dominators for G calculated by
3D-LIDS. For any optimal dominating set Dom∗ of G,
we have |Dom|/|Dom∗| < 24. Thus the approximation
ratio of 3D-LIDS is 24.

4 Connected Dominating Set

Our local algorithm to construct a CDS consists of
two phases. In the first phase, an IDS is found using
3D-LIDS. In the second phase, each dominator creates
paths connecting dominators that are at most three
hops apart. There are many algorithms proposed to
connect a set of dominators [2, 3], most of them depend
on using three hops node information. In our algorithm
the connector node can be chosen between different can-
didates according to different heuristics. I.e., the node
with the maximum power level, if the power saving is
an important issue for the algorithm; the node closest
to a dominator; or the node with the highest degree;
(This latter heuristic is used in our algorithm descrip-
tion). Our algorithm for finding the connectors can be
described as follows: each node x independently does
the following:

1. For every dominator node y in N2(x) with a lower
class number than x. Node x chooses from N1(x) a
node u with the highest degree that creates a path
(x, u, y).

2. For every dominator node y in N3(x), with a lower
class number than x, or has the same class num-
ber as x but x is closer to the central class than y.
Node x chooses two nodes u from N1(x) and v from
N2(x) that creates the path (x, u, v, y). Where
u, v can be chosen according to the same heuris-
tic above.

Lemma 8 If UDG is connected, then the set of domi-
nators and connectors constructed by 3D-LIDS and Al-
gorithm 3D-LCDS is a connected dominating set.

Lemma 9 In the worst case, the number of connectors
added by 3D-LCDS is 280 for every dominator.

It has been proved in [2] that the stretch factor of
their connected dominating set is 3. It can be observed
that this proof is applicable to our 3D-LCDS. The new
algorithms were implemented. Experiments show that
their performance is very good on randomly generated
3D UDG graphs, details can be found in [1].

5 Conclusion

In this paper, we proposed the first fully local algorithms
that construct a dominating set and a connected dom-
inating set of a UDG in 3D in constant time. The al-
gorithms do not rely on the construction of a spanning

tree, which makes them practical for situations where
topology changes are frequent and unpredictable. We
proved that the size of the constructed dominating set
is at most 24 times the optimal.
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