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k-Sets and Continuous Motion in R?

Marek Sulovsky*

Abstract

We prove several new results concerning k-sets of point
sets on the 2-sphere (equivalently, for signed point sets
in the plane) and k-sets in 3-space. Specific results in-
clude spherical generalizations of (i) Lovasz’ lemma (re-
garding the number of spherical k-edges intersecting a
given great circle) and of (ii) the crossing identity for k-
edges due to Andrzejak et al. As a new ingredient com-
pared to the planar case, the latter involves the winding
number of k-facets around a given point in 3-space, as
introduced by Lee and by Welzl, independently. As a
corollary, we obtain a crossing identity for the number
of pinched crossings (crossing pairs of triangles sharing
one vertex) of k-facets in 3-space.

1 Introduction

Given a set P of n points in general position in R? and
an integer parameter k, a k-set of P is a subset S C P
of size |S| = k that can be strictly separated from its
complement P\ S by an affine hyperplane. The k-set
problem is: What is the maximum number of k-sets of
an n-element point set in R%? This has been a basic
open problem in discrete and computational geometry
for more than thirty years', and despite intensive re-
search, there still remain substantial gaps between the
known upper and lower bounds, even in low dimensions.

In the plane R?, the currently best bound of O(n+v/k)
is due to Dey [7]. Like most papers dealing with k-sets,
Dey does not work directly with k-sets but with the
equivalent (up to constant factors) notion of k-edges,
i.e., directed edges pq, spanned by points p,q € P, such
that there are exactly k points of P to the right of (the
line through) the segment pq. A key ingredient in Dey’s
proof is to show that the number of crossings between k-
edges is at most O(n(k+1)). Dey’s analysis was further
refined by Andrzejak et al. [4] who proved the following
crossing identity for k-edges:
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Here, cry is the number of crossings of k-edges cry,
degy (¢) is half of the number of k-edges emanating from
q, and e. is the total number of j-edges, 0 < j < k.
This identity implies the desired bound on crg, since it
is known [3, 18] that ey, < nk.

In dimension 3, one considers k-facets: triangles
spanned by three points of P with precisely k£ points
on a specified side. The best upper bound O(nk?/?),
due to Sharir et al. [19], is also proved by analyzing
certain crossing configurations between k-facets, namely
pinched crossings (two triangles that share a vertex and
intersect in their relative interiors), but an exact iden-
tity like (1) is still missing.

Here, we prove such an identity, which we believe adds
to our understanding of k-facets in R3. As a key tech-
nical step along the way, we first extend (1) to point
sets on the 2-sphere. As a new ingredient compared
to the planar case, our identities involve the winding
number of k-facets around a given point in 3-space, as
introduced by Lee [12] and by Welzl [22].

2 Basics and preliminaries

Points and vectors

In the rest of the text we will clearly differentiate be-
tween point sets with no distinguished origin where we
are only interested in affine properties and wvector con-
figurations with a distinguished origin 0 where linear
properties involving this origin come into play as well.

k-facets

Let P be a set of n points in R in general position, i.e.,
any d+ 1 or fewer points are affinely independent. Con-
sider a (d—1)-dimensional simplex o := o(p1,...,pq) :=
conv{pi,...,pq} spanned by d points pi,...,ps € P.
We will often identify the simplex o with the set of
points spanning it and write ¢ = py...pg. The affine
hull of o is a hyperplane, which divides R into two open
halfspaces. A coorientation of the simplex ¢ is declaring
one of these two halfspaces positive and the other nega-
tive, denoted by o and o, respectively. A cooriented
simplex is called a k-facet if it contains exactly k points
of P in its positive halfspace. In particular, the O-facets
of P are precisely the facets of its convex hull with coori-
entation given by the outer normal vectors. We denote
the number of k-facets of P by ey (P), or simply ey, if P
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is clear from the context. Note that e, = 0 for £ < 0 or
k > n—d and that e, = e,_q—r for k < "de by sim-
ply reversing the coorientations. The number of (< k)-
facets and (< k)-facets of P will be denoted by e<x(P)
and ec,(P), respectively (i.e., e<i(P) = Zf:o e;(P)
and ec(P) := Zf;ol e;(P)) or only by e<; and ey, if
the point set P is understood from the context.

Spherical k-facets

The d-dimensional unit sphere in Rt centered at ori-
gin 0 will be denoted by S¢ (for example, S! is the unit
circle in the plane). Let V be a set of n vectors on
S? in linearly general position (i.e. any d + 1 or fewer
points linearly independent). Given a set of d vectors
V1,...,0q €V, we will call the set o := o(v1,...,v4) :=
S? N cone{vy,...,vq} a spherical simpler spanned by
those vectors. There is a unique (d — 1)-dimensional
unit sphere S centered at 0 containing ¢ and it subdi-
vides S¢ into two open hemispheres. As we will deal
with low-dimensional vector sets, this sphere will be
called an equator of S?. A coorientation of ¢ is again
declaring one of the hemispheres positive and the other
negative, denoted by o+ and o, respectively. A coori-
ented spherical simplex is called a (linear) k-facet, if
it contains exactly k points of V in its positive hemi-
sphere ot. A spherical k-facet vy ... vy defines a k-facet
v1...040 (with consistent coorientation) incident to 0
in the point set V U {0} C R4*! and vice versa.

Planar k-facets and linear k-facets on the two-
dimensional sphere are called k-edges and an orientation
of a k-edge by convention uniquely defines its coorienta-
tion by declaring the right halfplane to be positive and
vice versa, a coorientation defines the orientation.

Crossings

For a set P of n points in R? (or vectors in S¢) and
q1,---,qd—1 € P, the degy(q1...qx) denotes half the
number of k-facets of P containing ¢i,...,¢4—1. In an-
other words, if one looks at a hypersurface 2 ¥ de-
fined by the k-facets of P, then degy(q1 - ..qq—1) is just
the number of sheets of ¥, passing through the simplex
q1---9q—1. Two k-facets a and b cross, if their relative
interiors intersect?® (denoted by relint(a) Nrelint(b) # ()
and a line ¢ crosses a k-facets a, if £ Nrelint(a) # 0.

Let P be a set of n points in R? or vectors on
S2. The number of pairs of crossings of k-edges in
P will be denoted by cri(P) := |{{pg,rs} | pg #
rs are crossing k-edges}|.

2This surface is indeed well defined, as a consequence of the
interleaving property of the k-facets.

3The k-facets are (d — 1)-dimensional objects in R%, therefore
have an empty interior. Thus we need to speak of their relative
interiors instead.

Figure 1: An edge crossing and a pinched crossing.

Let P be a set of n points in R? or vectors on S?
and let opq,ors be two distinct k-facets of P. They
form a pinched crossing, if relint(opq) Nrelint(ors) # 0.
The number of pairs of k-facets of P forming a pinched
crossing will be denoted by pcry, (P).

Contractions

Let P be a set of points in R? in general position and
S C P,|S| < d. Denote P’ a point set obtained by
projecting P\ S orthogonally onto aff(S)* (the affine
orthogonal complement of the affine hull of S). Set the
coordinate system such that the projection of S is O.
Now projecting P’ centrally to a (d — |S])-dimensional
sphere yields a vector set on SIS, which is the con-
traction P/S. Image of a point p € P or a set Q C P
under this mapping will be denoted p/S or /S respec-
tively (assuming P is understood from the context).

Similarly, by taking the linear orthogonal complement
of the linear span, we define contraction of a vector con-
figuration.

Observe, that contraction U/S of a k-facet U U S of
P is again a k-facet in P/S and vice versa, if V' is a k-
facet of P/S then its preimage is a k-facet of P. Thus,
k-facets of P/S are in one-to-one correspondence with
k-facets of P containing S. For ¢ € P, the contraction
P/q := P/{q} is just the “angular view” of ¢ onto P\
{q¢}. When P C R? and q € P, one can see, that k-
facets in P which contain g and k-edges in P/q have the
same “shape”, i.e. two k-facets U,V > ¢ of P form a
pinched crossing (centered at ¢) iff their contractions,
k-edges U/q and V/q cross. If P is in convex position,
the contraction P/q lies completely on one hemisphere
of $% and thus, can be treated as a planar point set (for
the purposes of k-edges and their crossings — as we can
centrally project it on a plane close to ¢ with the same
normal vector as the aforementioned hemisphere).

f» g and h-vectors

Let V be a set of vectors in general position in R¢.
For 0 < k < n—d—1, we define f; as the number
of subsets U of size d + k + 1, which contain O in the
interior* of their convex hull conv(U) (or alternatively

4The interior is taken with respect to the standard topology
of R4, i.e. the convex hull has to be full-dimensional in order to
have a nonempty interior.
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R? = cone(U)).

Jo=fe(V) =
HU CV:|U|=d+k+1,0 € int(conv(U))}|.

The integer vector (fo, f1,.-., fn_a—1) is called the
f-vector of V. 1Tt is closely related to the h-vector
(ho,h1,. .., hn_qg—1), which is defined by inverting the
system of equations®

fk:Z@)hj, 0<k<n-—d—1.

J

It is convenient to extend the range of indices to all inte-
gers by defining fi := hy :=0fork <Qork >n—d—1.
Furthermore, we define gy := hy — hx—1. We collect
the terms g, into the g-vector (go, g1, - - - Gn—d—1, Gn—d)
(note that the range of indices is larger by 1 than that
of the f-vector and the h-vector). These definitions are
Gale dual to the more common definition of f, h, and
g-vectors for simplicial polytopes, see [22].

Winding numbers. Lee [12] and Welzl [22] indepen-
dently observed the following geometric interpretation
of the numbers g, as winding numbers. Consider U C
R4, which we think of as an affine point set. Consider
the (affine) k-facets of U. Let o be a point that does
not lie on any of the k-facets of U, and let p be a semi-
infinite ray directed towards o that avoids any (r — 2)-
dimensional affine flat spanned by U. Let g,:r(U ,p,0) be
the number of k-facets that we enter (traverse from the
positive to the negative side) as we move from infinity
towards o along p, and let g, (U, p,0) be the number of
k-facets of U that we leave (traverse from the negative
to the positive side). It turns out that the difference
g1 (U, p,0)—g; (U, p,0) is independent of the ray p, and
coincides with g (U, 0), if we consider U as a vector con-
figuration translated by —o (thus, taking o as the origin
0).

3 Recap of the Planar Crossing ldentity

We now review some the basic ingredients of the proof
of the crossing identity (1). Throughout this section, let
P be a set of n points in the plane.

Fact 1 Letk < 5 and{ be a line passing through p and
no other point of P and {T, {~ the halfplanes defined
by . Denote Ey(p) the set of all k-edges incident to
the point p € P, and let E,‘: (p) and E, (p) denote the
sets of those k-edges incident to p whose remaining end-
point lies in £ and ™, respectively. Then the difference

ot N
|Ek(p) N (2)‘ - |Ek:(p)m (2)' s
5Tn terms of generating functions, if we set f(zx) := >k frxk
and h(z) := Y, hrz®, the equations yield f(z) = h(z + 1), ie.,
h(@) = f(@ = 1), ie, by =3 (=1 (}) fi.

+2 if (P\p)net| <k
=2 df|[(P\p)Nne <k
0 otherwise

This directly implies a 2-dimensional exact variant of
the so-called Lowdsz lemma, which is one of the basic
tools to prove bounds on k-sets, both in the plane and
in higher dimensions.

Fact 2 (Lovasz lemma [14]) Let ¢ be a line not pass-
ing through any point of P and {1 and £~ the halfplanes
defined by it. Then { intersects exactly ep(P,{) =
2 -min{k,|P N LY, |PNL|} k-edges of P.

Andrzejak et al. [4] proved the crossing identity (1)
by analyzing how the quantities involved change under
continuous motion of the point set, and the facts col-
lected above are the basic ingredients that allow one to
perform this analysis.

4 Crossing identity on S?

Our ultimate goal is to study point sets in R? and find
identity of a similar nature as (1), which might (or might
not) help improving the upper bound on the number
er(P) in R3. The first step in this direction is studying
vector configurations on S2, which are the first step from
planar to three-dimensional point sets.

Let V be set of n vectors on S? in general position.
The first thing to observe is that the Fact 1 remains
valid in this setting (instead of a line, one considers an
equator on the sphere)®. We will simply refer to these
facts, even when using their S? versions. We can prove
a generalization of the Lovasz lemma.

Theorem 1 (Lovéasz lemma on S?) Let ¢ be an ori-
ented equator on S% avoiding the vectors of V.. Denote
£t and £~ the hemisphere on the right of ¢ and the hemi-
sphere on the left of £, respectively. Then the number of
(linear) k-edges intersected by £ is

er(V,0) =2 (min{k + 1,V N €+, |V e[}

+ g1 (V) — gi(V)), for any k < g

Note that this lemma puts in relation linear k-
edges (ex(V,¢)) with k-facets of the underlying three-
dimensional point set (the values g (V) and gr—1(V)).

4.1 Pinched crossings

As we already mentioned above, every set P of n points
in the plane fulfills the identity (1):

(P + 3 () — e

qeEP

6The proof works in the spherical setting without a substantial
change.
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for every 0 < k < "7_2 For a point set P C R? in con-
vex position, the contraction P/p lies in one hemisphere
and therefore is equivalent to a planar point set. Thus,
summing up the identities over all p € P yields

per(P) 2 3 (B s

pac(’)

forall0 < k < %*3 We prove similar identities for edge
crossings in a vector configuration on S? and pinched
crossings in a vector configuration on S3.

Theorem 2 Let V be configuration of n vectors on the
sphere 82, and let 0 < k < "=2. Then

CI‘k(V) + Z

(degkéV/Q)) =e (V) +mp(V) (3)
qeV

where
mi(V) :== (gp—1 — 9x) 2k + 1 + gr—1 — gr) + 4911

and cry, e« and g; denote cri(V),e<k(V) and g;(V),
respectively.

Summing these up for contractions U/p (observe, that
> pev e<k(U/p) = 3e<,(U)) yields:

Corollary 3 Let U be a configuration of n vectors on
the sphere S3, and let 0 < k < % Then

pery(U) 423 <degk(U/pq)) _

pae(y)

2

Bear(U) + S mu(U/p) (4)

peU

Dey’s bound e, < O(n*/?) for point sets in the plane
follows by combining the upper bound cry, = O(kn) with
the crossing lemma of Ajtai et al. [1] and Leighton [13].
Theorem 2 immediately gives an upper bound on the
number cry < n(k + 1) + my (as e, < n(k + 1) by the
analysis of Clarkson and Shor [6]).

Corollary 4 Let V be a set of n vectors on the sphere
S2. Then ex(V) < O(3/n* + n2my(V)).

For vector sets lying on one open hemisphere (i.e.
equivalent to planar point set), this coincides with the
Dey’s k-edge upper bound O(n*/3) and as the my, grows,
it gets to the trivial O(n?) upper bound for the maximal
possible values of my.

5 Concluding remarks

Using continuous motion arguments, we have derived
a crossing identity for the number of pinched crossings
between pairs of k-facets in R3. It would also be inter-
esting to obtain an identity of a similar spirit for the
number of crossing triples of k-facets.
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