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k-Sets and Continuous Motion in R3

Marek Sulovský∗ Uli Wagner∗

Abstract

We prove several new results concerning k-sets of point
sets on the 2-sphere (equivalently, for signed point sets
in the plane) and k-sets in 3-space. Specific results in-
clude spherical generalizations of (i) Lovász’ lemma (re-
garding the number of spherical k-edges intersecting a
given great circle) and of (ii) the crossing identity for k-
edges due to Andrzejak et al. As a new ingredient com-
pared to the planar case, the latter involves the winding
number of k-facets around a given point in 3-space, as
introduced by Lee and by Welzl, independently. As a
corollary, we obtain a crossing identity for the number
of pinched crossings (crossing pairs of triangles sharing
one vertex) of k-facets in 3-space.

1 Introduction

Given a set P of n points in general position in Rd and
an integer parameter k, a k-set of P is a subset S ⊆ P
of size |S| = k that can be strictly separated from its
complement P \ S by an affine hyperplane. The k-set
problem is: What is the maximum number of k-sets of
an n-element point set in Rd? This has been a basic
open problem in discrete and computational geometry
for more than thirty years1, and despite intensive re-
search, there still remain substantial gaps between the
known upper and lower bounds, even in low dimensions.

In the plane R2, the currently best bound of O(n 3
√
k)

is due to Dey [7]. Like most papers dealing with k-sets,
Dey does not work directly with k-sets but with the
equivalent (up to constant factors) notion of k-edges,
i.e., directed edges pq, spanned by points p, q ∈ P , such
that there are exactly k points of P to the right of (the
line through) the segment pq. A key ingredient in Dey’s
proof is to show that the number of crossings between k-
edges is at most O(n(k+1)). Dey’s analysis was further
refined by Andrzejak et al. [4] who proved the following
crossing identity for k-edges:

crk(P ) +
∑
q∈P

(
degk(q)

2

)
= e<k(P ). (1)
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1Some of the key references are[14, 10, 11, 9, 17, 5, 23, 2, 8, 7,
4, 19, 20, 16]; for further references and background, we refer to
the survey [21] or to [15, Chapter 11].

Here, crk is the number of crossings of k-edges crk,
degk(q) is half of the number of k-edges emanating from
q, and e<k is the total number of j-edges, 0 ≤ j < k.
This identity implies the desired bound on crk, since it
is known [3, 18] that e<k ≤ nk.

In dimension 3, one considers k-facets: triangles
spanned by three points of P with precisely k points
on a specified side. The best upper bound O(nk3/2),
due to Sharir et al. [19], is also proved by analyzing
certain crossing configurations between k-facets, namely
pinched crossings (two triangles that share a vertex and
intersect in their relative interiors), but an exact iden-
tity like (1) is still missing.

Here, we prove such an identity, which we believe adds
to our understanding of k-facets in R3. As a key tech-
nical step along the way, we first extend (1) to point
sets on the 2-sphere. As a new ingredient compared
to the planar case, our identities involve the winding
number of k-facets around a given point in 3-space, as
introduced by Lee [12] and by Welzl [22].

2 Basics and preliminaries

Points and vectors

In the rest of the text we will clearly differentiate be-
tween point sets with no distinguished origin where we
are only interested in affine properties and vector con-
figurations with a distinguished origin 0 where linear
properties involving this origin come into play as well.

k-facets

Let P be a set of n points in Rd in general position, i.e.,
any d+1 or fewer points are affinely independent. Con-
sider a (d−1)-dimensional simplex σ := σ(p1, . . . , pd) :=
conv{p1, . . . , pd} spanned by d points p1, . . . , pd ∈ P .
We will often identify the simplex σ with the set of
points spanning it and write σ = p1 . . . pd. The affine
hull of σ is a hyperplane, which divides Rd into two open
halfspaces. A coorientation of the simplex σ is declaring
one of these two halfspaces positive and the other nega-
tive, denoted by σ+ and σ−, respectively. A cooriented
simplex is called a k-facet if it contains exactly k points
of P in its positive halfspace. In particular, the 0-facets
of P are precisely the facets of its convex hull with coori-
entation given by the outer normal vectors. We denote
the number of k-facets of P by ek(P ), or simply ek if P
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is clear from the context. Note that ek = 0 for k < 0 or
k > n − d and that ek = en−d−k for k < n−d

2 by sim-
ply reversing the coorientations. The number of (≤ k)-
facets and (< k)-facets of P will be denoted by e≤k(P )

and e<k(P ), respectively (i.e., e≤k(P ) :=
∑k
i=0 ei(P )

and e<k(P ) :=
∑k−1
i=0 ei(P )) or only by e≤k and e<k if

the point set P is understood from the context.

Spherical k-facets

The d-dimensional unit sphere in Rd+1 centered at ori-
gin 0 will be denoted by Sd (for example, S1 is the unit
circle in the plane). Let V be a set of n vectors on
Sd in linearly general position (i.e. any d + 1 or fewer
points linearly independent). Given a set of d vectors
v1, . . . , vd ∈ V , we will call the set σ := σ(v1, . . . , vd) :=
Sd ∩ cone{v1, . . . , vd} a spherical simplex spanned by
those vectors. There is a unique (d − 1)-dimensional
unit sphere S centered at 0 containing σ and it subdi-
vides Sd into two open hemispheres. As we will deal
with low-dimensional vector sets, this sphere will be
called an equator of Sd. A coorientation of σ is again
declaring one of the hemispheres positive and the other
negative, denoted by σ+ and σ−, respectively. A coori-
ented spherical simplex is called a (linear) k-facet, if
it contains exactly k points of V in its positive hemi-
sphere σ+. A spherical k-facet v1 . . . vd defines a k-facet
v1 . . . vd0 (with consistent coorientation) incident to 0
in the point set V ∪ {0} ⊆ Rd+1 and vice versa.

Planar k-facets and linear k-facets on the two-
dimensional sphere are called k-edges and an orientation
of a k-edge by convention uniquely defines its coorienta-
tion by declaring the right halfplane to be positive and
vice versa, a coorientation defines the orientation.

Crossings

For a set P of n points in Rd (or vectors in Sd) and
q1, . . . , qd−1 ∈ P , the degk(q1 . . . qk) denotes half the
number of k-facets of P containing q1, . . . , qd−1. In an-
other words, if one looks at a hypersurface 2 Σk de-
fined by the k-facets of P , then degk(q1 . . . qd−1) is just
the number of sheets of Σk passing through the simplex
q1 . . . qd−1. Two k-facets a and b cross, if their relative
interiors intersect3 (denoted by relint(a)∩ relint(b) 6= ∅)
and a line ` crosses a k-facets a, if ` ∩ relint(a) 6= ∅.

Let P be a set of n points in R2 or vectors on
S2. The number of pairs of crossings of k-edges in
P will be denoted by crk(P ) := |{{pq, rs} | pq 6=
rs are crossing k-edges}|.

2This surface is indeed well defined, as a consequence of the
interleaving property of the k-facets.

3The k-facets are (d− 1)-dimensional objects in Rd, therefore
have an empty interior. Thus we need to speak of their relative
interiors instead.

Figure 1: An edge crossing and a pinched crossing.

Let P be a set of n points in R3 or vectors on S3

and let opq, ors be two distinct k-facets of P . They
form a pinched crossing, if relint(opq) ∩ relint(ors) 6= ∅.
The number of pairs of k-facets of P forming a pinched
crossing will be denoted by pcrk(P ).

Contractions

Let P be a set of points in Rd in general position and
S ⊂ P, |S| < d. Denote P ′ a point set obtained by
projecting P \ S orthogonally onto aff(S)⊥ (the affine
orthogonal complement of the affine hull of S). Set the
coordinate system such that the projection of S is 0.
Now projecting P ′ centrally to a (d − |S|)-dimensional
sphere yields a vector set on Sd−|S|, which is the con-
traction P/S. Image of a point p ∈ P or a set Q ⊂ P
under this mapping will be denoted p/S or Q/S respec-
tively (assuming P is understood from the context).

Similarly, by taking the linear orthogonal complement
of the linear span, we define contraction of a vector con-
figuration.

Observe, that contraction U/S of a k-facet U ∪ S of
P is again a k-facet in P/S and vice versa, if V is a k-
facet of P/S then its preimage is a k-facet of P . Thus,
k-facets of P/S are in one-to-one correspondence with
k-facets of P containing S. For q ∈ P , the contraction
P/q := P/{q} is just the “angular view” of q onto P \
{q}. When P ⊂ R3 and q ∈ P , one can see, that k-
facets in P which contain q and k-edges in P/q have the
same “shape”, i.e. two k-facets U, V 3 q of P form a
pinched crossing (centered at q) iff their contractions,
k-edges U/q and V/q cross. If P is in convex position,
the contraction P/q lies completely on one hemisphere
of S2 and thus, can be treated as a planar point set (for
the purposes of k-edges and their crossings – as we can
centrally project it on a plane close to q with the same
normal vector as the aforementioned hemisphere).

f , g and h-vectors

Let V be a set of vectors in general position in Rd.
For 0 ≤ k ≤ n − d − 1, we define fk as the number
of subsets U of size d + k + 1, which contain 0 in the
interior4 of their convex hull conv(U) (or alternatively

4The interior is taken with respect to the standard topology
of Rd, i.e. the convex hull has to be full-dimensional in order to
have a nonempty interior.
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Rd = cone(U)).

fk = fk(V ) :=

|{U ⊂ V : |U | = d+ k + 1,0 ∈ int(conv(U))}|.

The integer vector (f0, f1, . . . , fn−d−1) is called the
f -vector of V . It is closely related to the h-vector
(h0, h1, . . . , hn−d−1), which is defined by inverting the
system of equations5

fk =
∑
j

(
j

k

)
hj , 0 ≤ k ≤ n− d− 1.

It is convenient to extend the range of indices to all inte-
gers by defining fk := hk := 0 for k < 0 or k > n−d−1.
Furthermore, we define gk := hk − hk−1. We collect
the terms gk into the g-vector (g0, g1, . . . , gn−d−1, gn−d)
(note that the range of indices is larger by 1 than that
of the f -vector and the h-vector). These definitions are
Gale dual to the more common definition of f , h, and
g-vectors for simplicial polytopes, see [22].

Winding numbers. Lee [12] and Welzl [22] indepen-
dently observed the following geometric interpretation
of the numbers gk as winding numbers. Consider U ⊂
Rd, which we think of as an affine point set. Consider
the (affine) k-facets of U . Let o be a point that does
not lie on any of the k-facets of U , and let ρ be a semi-
infinite ray directed towards o that avoids any (r − 2)-
dimensional affine flat spanned by U . Let g+

k (U, ρ, o) be
the number of k-facets that we enter (traverse from the
positive to the negative side) as we move from infinity
towards o along ρ, and let g−k (U, ρ, o) be the number of
k-facets of U that we leave (traverse from the negative
to the positive side). It turns out that the difference
g+
k (U, ρ, o)−g−k (U, ρ, o) is independent of the ray ρ, and

coincides with gk(U, o), if we consider U as a vector con-
figuration translated by −o (thus, taking o as the origin
0).

3 Recap of the Planar Crossing Identity

We now review some the basic ingredients of the proof
of the crossing identity (1). Throughout this section, let
P be a set of n points in the plane.

Fact 1 Let k < n
2 and ` be a line passing through p and

no other point of P and `+, `− the halfplanes defined
by `. Denote Ek(p) the set of all k-edges incident to
the point p ∈ P , and let E+

k (p) and E−k (p) denote the
sets of those k-edges incident to p whose remaining end-
point lies in `+ and `−, respectively. Then the difference

|Ek(p) ∩
(
`+

2

)
| − |Ek(p) ∩

(
`−

2

)
| is

5In terms of generating functions, if we set f(x) :=
∑

k fkx
k

and h(x) :=
∑

k hkx
k, the equations yield f(x) = h(x + 1), i.e.,

h(x) = f(x− 1), i.e., hj =
∑

k(−1)k
(k
j

)
fk.

+2 if |(P \ p) ∩ `+| ≤ k
−2 if |(P \ p) ∩ `−| ≤ k
0 otherwise

This directly implies a 2-dimensional exact variant of
the so-called Lovász lemma, which is one of the basic
tools to prove bounds on k-sets, both in the plane and
in higher dimensions.

Fact 2 (Lovász lemma [14]) Let ` be a line not pass-
ing through any point of P and `+ and `− the halfplanes
defined by it. Then ` intersects exactly ek(P, `) :=
2 ·min{k, |P ∩ `+|, |P ∩ `−|} k-edges of P .

Andrzejak et al. [4] proved the crossing identity (1)
by analyzing how the quantities involved change under
continuous motion of the point set, and the facts col-
lected above are the basic ingredients that allow one to
perform this analysis.

4 Crossing identity on S2

Our ultimate goal is to study point sets in R3 and find
identity of a similar nature as (1), which might (or might
not) help improving the upper bound on the number
ek(P ) in R3. The first step in this direction is studying
vector configurations on S2, which are the first step from
planar to three-dimensional point sets.

Let V be set of n vectors on S2 in general position.
The first thing to observe is that the Fact 1 remains
valid in this setting (instead of a line, one considers an
equator on the sphere)6. We will simply refer to these
facts, even when using their S2 versions. We can prove
a generalization of the Lovász lemma.

Theorem 1 (Lovász lemma on S2) Let ` be an ori-
ented equator on S2 avoiding the vectors of V . Denote
`+ and `− the hemisphere on the right of ` and the hemi-
sphere on the left of `, respectively. Then the number of
(linear) k-edges intersected by ` is

ek(V, `) :=2 ·
(

min{k + 1, |V ∩ `+|, |V ∩ `−|}

+ gk−1(V )− gk(V )
)
, for any k <

n

2
.

(2)

Note that this lemma puts in relation linear k-
edges (ek(V, `)) with k-facets of the underlying three-
dimensional point set (the values gk(V ) and gk−1(V )).

4.1 Pinched crossings

As we already mentioned above, every set P of n points
in the plane fulfills the identity (1):

crk(P ) +
∑
q∈P

(
degk(q)

2

)
= e<k(P ),

6The proof works in the spherical setting without a substantial
change.
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for every 0 ≤ k < n−2
2 . For a point set P ⊂ R3 in con-

vex position, the contraction P/p lies in one hemisphere
and therefore is equivalent to a planar point set. Thus,
summing up the identities over all p ∈ P yields

pcrk(P ) + 2
∑

pq∈(P
2)

(
degk(pq)

2

)
= 3e<k(P ),

for all 0 ≤ k < n−3
2 . We prove similar identities for edge

crossings in a vector configuration on S2 and pinched
crossings in a vector configuration on S3.

Theorem 2 Let V be configuration of n vectors on the
sphere S2, and let 0 ≤ k < n−2

2 . Then

crk(V ) +
∑
q∈V

(
degk(V/q)

2

)
= e<k(V ) +mk(V ) (3)

where

mk(V ) := (gk−1 − gk)(2k + 1 + gk−1 − gk) + 4gk−1

and crk, e<k and gj denote crk(V ), e<k(V ) and gj(V ),
respectively.

Summing these up for contractions U/p (observe, that∑
p∈U e<k(U/p) = 3e<k(U)) yields:

Corollary 3 Let U be a configuration of n vectors on
the sphere S3, and let 0 ≤ k < n−3

2 . Then

pcrk(U) + 2
∑

pq∈(U
2)

(
degk(U/pq)

2

)
=

3e<k(U) +
∑
p∈U

mk(U/p) (4)

Dey’s bound ek ≤ O(n4/3) for point sets in the plane
follows by combining the upper bound crk = O(kn) with
the crossing lemma of Ajtai et al. [1] and Leighton [13].
Theorem 2 immediately gives an upper bound on the
number crk ≤ n(k + 1) + mk (as ek ≤ n(k + 1) by the
analysis of Clarkson and Shor [6]).

Corollary 4 Let V be a set of n vectors on the sphere
S2. Then ek(V ) ≤ O( 3

√
n4 + n2mk(V )).

For vector sets lying on one open hemisphere (i.e.
equivalent to planar point set), this coincides with the
Dey’s k-edge upper bound O(n4/3) and as the mk grows,
it gets to the trivial O(n2) upper bound for the maximal
possible values of mk.

5 Concluding remarks

Using continuous motion arguments, we have derived
a crossing identity for the number of pinched crossings
between pairs of k-facets in R3. It would also be inter-
esting to obtain an identity of a similar spirit for the
number of crossing triples of k-facets.
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