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An Optimal Solution for Dynamic Polar Diagram
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Abstract

The Polar Diagram [1] of a set of points (i.e. sites) is a
partition of the plane. It is a locus approach for prob-
lems processing angles. Also, Dynamic Polar Diagram
problem is a problem in which some points can be added
to or removed from the point set of the Polar Diagram.
Sadeghi et al. [4] introduced this problem and solved
it using an algorithm which is optimal in the case that
some points are deleted from the set. But this algorithm
is not optimal when some new points are inserted into
the diagram.

In this paper, we present an algorithm to solve the
Dynamic Polar Diagram in optimal time in which we
insert some new points into the diagram one by one.
Our approach applies only on the regions that would
be changed and solves the problem for each insertion in
O(k + log n) time, in which 1 ≤ k ≤ n is the number of
the sites which their regions would be changed.

1 Introduction

C. I. Grima et al. [1] introduced the concept of the
Polar Diagram. This diagram is a plane partition with
similar features to those of the Voroni diagram. In fact
the Polar Diagram can be seen in the context of gener-
alized Voronoi diagram. The polar angle of a point p
with respect to a point si, denoted by angsi(p), is the
angle formed by the positive horizontal line of p and the
straight line linking p and si. Given a set S of n points
in the plane, the locus of points with smaller positive
polar angle with respect to si ∈ S is called polar region
of si and denoted by Psi [1, 2]. Thus,

PSi
= {(x, y) ∈ E2|angSi

(x, y) < angSj
(x, y); ∀j 6= i}. (1)

Each polar region, as observed in the Figure 1, is
constructed using two different half-lines or polar edges.
There is always a horizontal edge starting at each si,
{(x, y), x < xi}, and another oblique polar edges with
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Figure 1: To the left, the Polar Diagram of a set of points

in plane. The polar region of each site is constructed by

horizontal and model lines. To the Right, the Polar Diagram

after insertion of a new site sk.

the gradient of the straight line crossing si and sk, with
si ∈ Psk that is referred as the model line. in this case
we call sk the parent of si denoted by sk = Par(si) or
si ≺ sk.
The plane is divided into different regions in such a way
that if point (x, y) ∈ E2 lies in Psi , it is known that si
is the first site found performing an angular scanning
starting from (x, y). The boundary is the horizontal
line crossing the top most site of S. Figure 1 depicts
the Polar Diagram of an exemplary set of points on the
plane. Also for n points on the plane, it is not possible
to compute the Polar Diagram in less than Θ(nlogn)
time [1, 3].

There are at least two approaches for the Polar Dia-
gram construction, the Incremental and the Divide and
Conquer methods [1], both working in optimal time.

For computing the Polar Diagram using the Incre-
mental method, suppose S is sorted from top to down
obtaining the sequence s0, s1, ..., si−1. The polar region
of si is computed after Ps0 , Ps1 , ..., Psi−1 are processed.
Suppose si is in the region of sj . The model line of Psi

crosses si and sj , and by drawing the horizontal half-line
of si, the boundary of Psi will be introduced [1, 5, 6].

Section 2 consists of general information about Dy-
namic Polar Diagram. In Section 3, we present some
new definitions which are needed through the rest of
the papre. In Section 4, we introduce our algorithm.
Section 5 analyzes the algorithm and Section 6 present
a conclusion for this paper.

2 Dynamic Polar Diagram

Sadeghi et al. [4] introduced a problem called Dynamic
Polar Diagram problem. In this problem, some points
can be added to, or removed from the point set. So-
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lution to this problem is to redraw the Polar Diagram
in the minimum time. Sadeghi et al. propose to de-
termine an area out of which the Polar Diagram does
not change due to the insertion or deletion on the new
sites. Although, solving the deletion process was op-
timum, there are several examples that show this al-
gorithm would not solve the problem in optimum time
when some new points are inserted into the point set.
Solving the problem in case of insertion has remained
an open problem [4].

We introduce an algorithm to find the actual changes
in diagram when some new sites are inserted into the
point set. We apply the algorithm to each site one by
one, the same way as Sadeghi et al. did, so we can
say our algorithm is an online solution to the Dynamic
Polar Diagram problem.

3 Definitions and Preliminaries

Definition 1 Complement Area for each polar region
Psi is denoted by Com(Psi) and constructed using
two half-lines or edges, one is the horizontal half-line
{(x, yi), x > xi} and the other is a half-line which links
si to Par(si) and extends up to the infinity (Figure 2)

In fact, the Complement Area for each polar region
is built by continuing the region edges. For each polar
region Psi , Com(Psi) is bounded between two lines that
we know their equations, in other words:

Com(Psi) = {(x, y)|x > xi,

yi < y <
yPar(si) − yi

xPar(si) − xi
(x− xi) + yi} (2)

Definition 2 Parallel Complement Area for each polar
region Psi is a sub area of Com(Psi) which is above
PPar(si) and is denoted by PCom(Psi).

In other words,

PCom(Psi) = {(x, y)|x > xPar(si),

yPar(si) < y <
yPar(si) − yi

xPar(si) − xi
(x− xi) + yi} (3)

Lemma 1 The parallel complement area of each polar
region Psi is a subset of complement area of Psj which
sj = Par(si), i.e. PCom(Psi) ⊂ Com(Psj ).

Proof. The proof is rather obvious. According to gen-
eral position condition, si would not be located on the
model line of Psj , so for each site si, sj which si ≺ sj ,
the model line of region Psi forms a non-zero angle θ
with the model line of region Psj (Figure 2) and the
region PCom(Psi) is always included in Com(Psj ). �

Figure 2: The complement area and the parallel comple-

ment area of polar region Psi are shown on the right. The

parallel complement area of each polar region Psi is a subset

of complement area of PPar(i). which is shown on the left.

We are going to find the regions which are be changed
by inserting a new site sk into the diagram. The position
of the sites are fixed, so the horizontal edge of regions
will remain unchanged. Also, changing of the model line
of Psi leads to changing the shape of Psi .

The inserted point would effect the polar region Psi

whether by changing its model line (changing the shape
of the region), or by falling inside a region or intersect-
ing a region (changing the boundaries of the region).
When the regions boundaries are changed, the incre-
mental method would draw the new regions without any
change in the algorithm procedure. Suppose sj is the
first lower site from the site sk which is located on the
right site of its horizontal line specifies the boundaries
of Psk . By redrawing Psk , ..., Psj according to the in-
cremental method [1], diagram update procedure would
be complete. But the changes in the shape of regions
should be studied in another way that will be discussed
next.

We introduce a lemma that holds a necessary and
sufficient condition for changing the shape of a polar
region, when a new site is inserted into the diagram.

Lemma 2 For any new site sk in Polar Diagram, the
shape of polar region Psi will be changed if and only if
sk ∈ Com(Psi).

Proof. Using equation 2, if sk ∈ Com(Psi) we have
ysi < ysk . Considering sj = Par(si), there are two
conditions, one in which ysi < ysk ≤ ysj and the other
ysj ≤ ysk , so:

1. In the case where ysi < ysk ≤ ysj , new site sk is
located between horizontal lines crossing si and sj .
Whether the position of sk is in psj or not, sk is ei-
ther sk ∈ Com(Psi)

⋂
Psj or sk /∈ Com(Psi)

⋂
Psj ,

so:

(a) If sk /∈ Com(Psi)
⋂
Psj , then the horizontal

line of Psk will cut the entire the polar region
Psj , and si is not a child of sj any longer, and
there is no other sites between si and sk so
si ≺ sk.
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Figure 3: The position of a new site sk inside the comple-

ment area of Psi .

Figure 4: The position of a new site sk when it is not located

in the complement area of Psi .

(b) If ysi < ysk ≤ ysj and sk ∈ Psj , then sk is
located in a triangular cell (Figure 3) and the
model line of Psk would be drawn to link sj
and sk which intersects the base of triangular
cell. Then, the polar region of sk will include
si and the model line of Psk would be changed.

2. In the second case, ysj ≤ ysk , suppose sequence
s = si, , sk−1, sk is a set of sites that includes si and
sk and is between them. Again let sj = Par(si); we
show that sk would be the new parent of si. From
Lemma 1, sk ∈ PCom(Psi) ⊂ Com(Psj ). Without
loss of generality consider sk to be located between
si and sj . From case 1, sk is the new parent of sj ,
then the new model line of Psj changes in a way
that the polar region Psj , no longer includes si (Fig-
ure 3). From the general position condition, θ1 > 0
(sk and sj are not on a direct line), this causes Psj

not to include si any longer. However θ2 > 0 as
well, where θ2 is the angle made by the model lines
of Psj and Psk , and this makes that new polar re-
gion Psk to cover all of the missing points of old Psj ,
so si will be in Psk andPsi would be changed. We
claim that our assumption does notinterfere with
the generality of the problem, because if sj bethe
indirect parent of si, si ≺ si+1 ≺ ... ≺ sj , then with
the same method and making two angles θ1, θ2 > 0,
for each pair of these sites, eventually, we conclude
sk is the new parent of si.

On the other hand, we are going to prove if the shape
of a polar region Psi would change by inserting a new

site sk, sk is located in Com(Psi). Suppose this is not
true (proof by contradiction) and sk is the new parent
of si which is not located in Com(Psi). In this case,
sk must be located in C = Plane− Com(Psi) which is
shown in Figure 4. If sk is below si, there is a contra-
diction, because it can not be a parent of si and below
si. Else if, sk is located above si, it would be either in
a polar region of sj which sj = Par(si), or in Psj which
sj is not located in Com(si) (if sj be located in Com(si)
then from case 1, it should be the parent of si). On one
hand sk is located in polar region of parent si and it is
obvious that Psk will not include si (Figure 4), on the
other hand, if sk is located in the other region, It would
not cut the region of sj and change the model line of
Psi , so there is a contradiction. �

Lemma 2 is a necessity for finding the changing re-
gions when a site is inserted into the diagram. We in-
troduce an algorithm which explore the diagram using
some preprocesses. We need a tree that corresponds to
the diagram. Each node vi of the tree corresponds to a
site si. If sj be the parent of si, then there is an edge
vivj in the tree that could model the parent to child
relations. This tree could be a Horizon Tree [7] of the
sites which could represent the parent-child relation of
sites. With the help of searching algorithms, this tree
would be useful to seek the changing regions.

Definition 3 For each site si, Symmetry Indexing Re-
gion of si, denoted by SIi, is a sub area of Com(Psi)
which is not in PCom(Psi),
i.e. ∀i, SIi = Com(Psi)− PCom(Psi) (Figure 5).

Definition 4 We name the area which is not in any
SIi, the Null region of the diagram (Figure 5).

We use these definitions to produce a new diagram
which is used in our algorithm.

Definition 5 Complemental diagram for Polar Dia-
gram, denoted by CPD, is a partition of the plane which
is constructed by two regions, The Null region and the
SI region, SI =

⋃
i SIi (Figure 5).

4 Algorithm

Our algorithm functions by finding the starting point
for exploring the diagram. When the new site sk is
inserted into the Polar Diagram, it would be located in
one of the regions of the CPD, either in Null or in SI
regions. It is obvious that, if sk is located inside the Null
region, due to lemma 2, there would not be any changes
in the shape of the regions (because Null region has no
conjunction with the Com(si) for all sites si). But if
sk ∈ SIi, from Lemma 2, Psi is the first region where
the diagram would be changed. The algorithm finds
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Figure 5: To the left, the Polar Diagram with 3 sites which

the CPD is drawn on it, the colored regions is SI and the

rest is the Null region. To the Right, Corresponding tree

with new site sk.

other changing regions by exploring the diagram using
the already mentioned corresponding tree.

From computational perspective, it is easy to find a
SIi where sk is located in, using a point location algo-
rithm [8] having the time complexity of O(log n).

Afterward, if sk ∈ SIi we will continue the algorithm.
We will find node vi in the tree that corresponds to site
si in the diagram and start exploration from its siblings,
left to right. During exploration, every site sj will be
checked by Lemma 2 condition if its region has been
changed or not. If a region Psj is not changed (sk 6∈
Com(Psj )), for all of its children si, the region Psi would
not also change (from lemma 1, sk 6∈ PCom(Psi) ⊂
Com(Psj )). The algorithm ignore them and continue
the exploration for its siblings. Similarly, if a site sj is
not changed, all of its right hand’s siblings sp will not
also change. Because with the same parent, they have
bigger complement areas which cover the complement
area of the Psj , the algorithm continues to find all of
the changing regions.

Algorithm 1. inserting a new point to the Polar Diagram

input: n sites on the plane, Polar Diagram,

corresponding tree, CPD diagram and a new point site sk.

output: Polar Diagram of n+1 points

step 1: Find SIi from the CPD where sk is located in.

step 2: p← sk , S′ = ∅
step 3: Explore the tree from siblings of p, from left

to right

3_1: If region Psi is changed, S′ ← si and p← sj

which sj is one of the children of si, goto 3

3_2: If Psi is not changed and if si

is in the right side of the last changing region goto 4

step 4: Update the diagram redrawing Psi , for all si ∈ S′

5 Analysis

Our algorithm does not need to save a lot of information
and reach the required data by exploring the diagram
step by step. This algorithm solves the problem for
each insertion in O(k + log n) time in which 1 ≤ k ≤ n
is the number of the sites which their regions would be
changed and log n indicates the time complexity of the

point location procedure. Clearly this is optimal in all
cases. but it can perform better in special cases. The
more lower the location of the new site, the less explo-
ration in the diagram is needed, and the algorithm per-
forms more better, since k is much closer to 1. Similarly
the more the location of the new site sk is to the left
of the diagram, the more efficient this algorithm would
become, because the prospects of sk located in the Null
region of CPD are more and this algorithm would reach
the answer sooner.

6 Conclusion

The Polar Diagram has been recently introduced by
Grima et al. [1]. The dynamic version of this problem
also has been discussed by Sadeghi et al. [4]. They in-
troduced this problem and solved it using an algorithm
which is optimal in the case that some points delete
from the points set. But this algorithm is not optimal
when some new points insert into the diagram.

In this paper, we presented an algorithm, solve the in-
sertion case of Dynamic Polar Diagram in optimal time.
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