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Deflating Polygons to the Limit

Isabel Hubard∗ Perouz Taslakian†

Abstract

In this paper we study polygonal transformations
through an operation called deflation. It is known that
some families of polygons deflate infinitely for given de-
flation sequences. Here we show that every infinite de-
flation sequence of a polygon P has a unique limit, and
that this limit is flat if and only if exactly two vertices
of P move (are reflected) finitely many times in the se-
quence.

1 Introduction

A deflation of a simple polygon P is an operation that
reflects a subchain of P through a line ` that crosses
P at exactly two of its vertices such that the result-
ing polygon is (a) simple and (b) contains the reflected
subchain within its convex hull. We call ` a line of de-
flation. A deflation is the inverse operation of a pocket
flip introduced by Erdős in 1935 [5]. A pocket of a
polygon is a maximal connected region exterior to the
polygon and interior to the convex hull. A non-convex
polygon has at least one pocket. A pocket flip reflects a
pocket chain of P through the line incident to the edge
of the pocket that is also an edge of the convex hull of
P . Erdős conjectured that every polygon can be con-
vexified after a finite number of (possibly) simultaneous
pocket flips. A few years later, Nagy noted that flipping
pockets simultaneously may result in self-intersecting
polygons, and in 1939 he showed that every polygon is
convexified after a finite number of sequential pocket
flips [2]. Nagy’s theorem and its proof have been redis-
covered and reproved in different contexts ever since. It
was only recently that Demaine et al. [4] showed that
many of these proofs, including that of Nagy, are in fact
either incorrect or incomplete, and provided a correct
proof. Following the same spirit as pocket flips, Weg-
ner [7] conjectured in 1993 that every polygon admits
a finite number of deflations. His conjecture was dis-
proved eight years later by Fevens et al. [6] who found
a family of quadrilaterals that deflate infinitely for any
deflation sequence. Ballinger [1] showed that every in-
finitely deflating quadrilateral is within the family de-
scribed by Fevens et al., thus completing the character-
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elles, perouz.taslakian@ulb.ac.be

ization of infinitely deflating quadrilaterals. In trying
to advance this characterization for general n-gons, De-
maine et al. [3] show that every pentagon (having no
vertices of angle 180◦) has a deflation sequence that is
finite. On the other hand, they show that there ex-
ist pentagons that deflate infinitely for well-chosen de-
flation sequences and that four of the vertices of such
pentagons induce an infinitely deflating quadrilateral.

As an open problem, Demaine et al. [3] ask whether
every infinite deflation sequence of a polygon has a
unique limit. In this paper we show that this indeed
is the case. We also show that the limit of any infinite
deflation sequence is flat (all vertices are collinear) if
and only if exactly two of the vertices of the polygon
are reflected only a finite number of times throughout
the sequence.

2 Basic Notions

Using similar terminology as in [3] we let P =
〈v0, v1, . . . , vn−1〉 be a simple polygon with a clock-
wise ordering of its vertices and P 0, P 1, . . . , be an in-
finite deflation sequence of P where, for each k, P k =
〈vk0 , vk1 , . . . , vkn−1〉 denotes the polygon after k arbitrary
deflations. Thus, initially P = P 0. Throughout the pa-
per we let {P k} denote the sequence P 0, P 1, . . . where
k = 0, 1, 2, . . . . Let P ∗ denote an accumulation point
of {P k}, when it exists, having vertices v∗i . An infinite
sequence {P k} has an accumulation point P ∗ if some
subsequence of {P k} converges to P ∗. We say that P ∗ is
the limit of the sequence if every subsequence converges
to P ∗. The following proposition follows immediately
from the fact that P i+1 ⊂ hull(P i), for all i ∈ N.
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Figure 1: An example of a deflating chain: at time t, the
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Proposition 1 If P ∗ is an accumulation point of an
infinite deflation sequence of a polygon P , then P ∗ ⊆
hull(P t) for every t ∈ N.

A moving vertex of an infinitely deflating pocket chain
C is a vertex that is on C but not on the line of de-
flation of C. A moving vertex of a sequence {P k} is
a vertex that is on some infinitely deflating chain of
this sequence. Equivalently, a non-moving vertex is a
vertex that is not a moving vertex, meaning it moves
a finite number of times for the given deflation se-
quence. The turn angle of a vertex vi is the signed an-
gle θ ∈ (−180◦, 180◦] between the two vectors vi − vi−1
and vi − vi+1. A hairpin vertex vi is a vertex whose
incident edges overlap (forming an absolute turn an-
gle of 180◦). A maximal infinitely deflating chain C
of {P k} is a maximal sequence of infinitely deflating
pocket chains such that for every two pocket chains
C,C ′ ∈ C, there exists a sequence of infinitely deflat-
ing pocket chains C1, C2, . . . , Ck of P such that Ci ∈ C,
C1 = C and Ck = C ′, and any two consecutive chains
Ci and Ci+1 in the sequence share at least one edge,
for all i = 1, 2, . . . , k − 1. Every vertex on a maximal
infinitely deflating chain, except the first and last along
the chain, are moving vertices. Throughout the paper
we assume that P does not have straight vertices: ver-
tices having a turn angle of 0◦. This implies that P k

has no straight vertices for any k ∈ N∗, and in any accu-
mulation point P ∗ [3, Corollary 1]. A flat polygon is a
polygon with all vertices collinear. For purposes of this
paper we assume that all the vertices of a flat polygon
are hairpin vertices. This implies that given two consec-
utive vertices of a flat polygon, the remaining vertices
are determined by the lengths of the edges. We hence
have the following proposition.

Proposition 2 All flat configurations of a polygon P
(with no straight vertices) are equivalent (up to an isom-
etry of the plane).

3 The limit of an infinite deflation sequence

In this section we prove some properties of polygons
that admit infinitely many deflations for some fixed in-
finitely deflating sequence P = P 0, P 1, . . . . Note that
once the sequence is fixed, there exists t ∈ N such that
every line of deflation in the sequence P t, P t+1, . . . is
used an infinite number of times. Abusing the notation,
we rename all the polygons in the sequence as follows:
P k := P k+t. Thus, every line of deflation in the se-
quence P 0, P 1, . . . is used an infinite number of times.
We start by stating a lemma from [3].

Lemma 3 [Demaine et al.] If P ∗ is an accumulation
point of the infinite deflation sequence P 0, P 1, P 2, . . . ,
and subchain vi, vi+1, . . . , vj (where j − i ≥ 2) is
the pocket chain of infinitely many deflations, then

v∗i , v
∗
i+1, . . . , v

∗
j are collinear and v∗i+1, . . . , v

∗
j−1 are hair-

pin vertices.

Lemma 3 has important consequences in the study
of infinitely deflating polygons. In particular, it implies
that every infinitely deflating sequence has an accumu-
lation point. Using Lemma 3 it is not difficult to see
that two infinitely deflating pocket chains Ci and Cj of
a polygon P that have at least one edge in common con-
verge to a line in every accumulation point P ∗. Thus,
we have the following corollary.

Corollary 4 Every maximal infinitely deflating chain
flattens in every accumulation point.

Lemma 3 also shows that the vertices belonging to an
infinitely deflating chain become hairpin vertices at the
accumulation points, and hence their absolute turn an-
gle must decrease throughout the sequence, approaching
zero. This implies that if vi is a vertex on an infinitely
deflating chain C, then vi is on the line of deflation of
some infinitely deflating chain C ′ 6= C.

In what follows we deal with infinite deflation se-
quences. We show that any such sequence has a limit
and at least two non-moving vertices. Furthermore,
if this limit is flat the sequence has exactly two non-
moving vertices. To this end, we first state a fact from
basic geometry in the plane, which will help us with
some proofs.

Fact 5 Let C be a circle and ` a line that intersects C
but does not pass through its center. Thus ` splits C into
two arcs. Let H+

` be the open half-space determined by
` that contains the shorter arc C ′. Then the reflection
of H+

` ∩ hull(C ′) through ` is a subset of hull(C).

Theorem 6 If an infinite deflation sequence of a poly-
gon P has an accumulation point P ∗ that is flat, then
P ∗ is the (unique) limit of the sequence.

Proof. Let ε > 0. To show that P ∗ is the limit of
the sequence, we shall find a time T ∈ N∗ for which,
|vti−v∗i | < ε, for every t ≥ T and every i = 0, 1, . . . n−1.
Note that P ∗ is flat, which means that v∗0 , v

∗
1 , . . . , v

∗
n−1

are collinear and, hence, have a unique configuration.
Without loss of generality, assume that the vertices of
P ∗ are along the x-axis and v∗0 and v∗k are the vertices
with the minimum and maximum x-coordinates, respec-
tively. Let d denote the smallest distance between two
vertices v∗i and v∗j of P ∗. Because P ∗ is an accumula-
tion point, there exists a subsequence P t1 , P t2 , . . . that
converges to P ∗. Hence, for δ < min{ε, d3}, there exists
a sδ ∈ N∗ such that, for each i = 0, 1, . . . , n−1, if s > sδ
then vtsi is within a disc Ci,δ centred at v∗i with radius
δ. Note that our choice of δ ensures that these discs do
not intersect.

We first claim that a line of deflation ` does not
cross the line segment defined by v∗0 and v∗k. Assume
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otherwise: that at some time t, ` crosses the segment
(v∗0 , v

∗
k). Then the region defined by ` and the pocket

chain to be reflected contains at least one v∗i . If we re-
flect this pocket chain through `, v∗i will be left exterior
to hull(P t+1), a violation of Proposition 1.

Thus, for each s > sδ, we may assume that `ts
does not cross the segment (v∗0 , v

∗
k); which impies that

`ts does not go through the centers of any Ci,δ, i =
0, . . . , n − 1. Then `ts splits each Ci,δ into two arcs
such that every vertex to be reflected is within the re-
gion defined by `ts and the shorter arc of each Ci,δ. By
Fact 5, vts+1

i remains within Ci,δ for all s > sδ and
i = 0, 1, . . . , n − 1. Note that due to our choice of δ,
Ci,δ ⊂ Ci,ε, implying that for every t > tsδ , v

t
i ∈ Ci,ε,

for every i = 0, 1, . . . , n− 1. Thus, P ∗ is the limit. �

Lemma 7 If P deflates infinitely for a given sequence
{P k}, then {P k} has at least two non-moving vertices.

Proof. Assume P has at most one non-moving vertex.
Then there is a unique maximal infinitely deflating chain
containing all the moving vertices of P , and by Corol-
lary 4 this chain flattens. Therefore, every polygon
with at most one non-moving vertex is flat in every ac-
cumulation point P ∗. By Theorem 6, P ∗ is a limit.

We shall now show that the extreme vertices along
this flat configuration can no longer move after a certain
number of deflation steps. Because P ∗ is flat, without
loss of generality we may assume that P ∗ lies on the
x-axis; we can further assume that v∗k is the vertex of
P ∗ with largest x-coordinate. Let d denote the smallest
distance between two vertices of P ∗. For ε < d

3 , there
exists a tε ∈ N such that for every t > tε, v

t
i is within

a disc Ci,ε centered at v∗i with radius ε. Note that our
choice of ε ensures that these discs do not intersect.

Let L be the vertical line that goes through v∗k, and
let H+

L be the open half-space determined by L that
contains v∗i for all i = 0, 1, . . . , n − 1 (since v∗k is the
vertex of P ∗ with the largest x-coordinate). In par-
ticular, every Ci,ε (and hence every vti) is in H+

L for
i 6= k, and t > tε (see Figure 2). Because vk is a mov-
ing vertex, then there must exist t > tε such that vtk is
reflected through some line of deflation. From the defi-
nition of deflations we know that after any deflation step
the vertices on the reflected pocket chain lie inside the
convex hull of the ones that did not move during that
particular deflation step. In this case, as vtk is reflected,
then vt+1

k lies inside hull(P t+1). We further know that
vti ∈ Ci,ε ⊂ H

+
L for every i 6= k and t > tε. In particular

all the vertices vt+1
i ∈ H+

L . This means that hull(P t+1),
and consequently all the vertices of P t+1, lie in H+

L . But
this implies that hull(P t+1) excludes v∗k (which lies on
L) thus violating Proposition 1. Therefore, vtεk can no
longer converge to v∗k and hence is not a moving vertex.
A symmetric argument can be made about the other
extreme vertex of P ∗, assuming it is a moving vertex.
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Figure 2: At step t > T , vti lies inside Ci,ε, which in
turn lies inside H+

L for all i 6= k.

Therefore, if P deflates infinitely for a given sequence,
then P has at least two non-moving vertices. �

If u0, u1, . . . , um are the non-moving vertices of a
deflation sequence {P k} of P (in clockwise order),
Lemma 7 implies that all the moving vertices of the
deflation sequence that lie along the chain between ui
and ui+1 form a maximal infinitely deflating chain, and
hence, by Corollary 4, are collinear in every accumula-
tion point. Arguing as in Theorem 6 one can show the
following theorem.

Theorem 8 If P deflates infinitely for a given defla-
tion sequence, then this sequence has a limit defined by
the non-moving vertices.

Corollary 9 An infinite deflation sequence of a poly-
gon P with no straight vertices flattens in the limit if
and only if it has exactly two non-moving vertices.

Proof. If P has two non-moving vertices, then by The-
orem 8 it has a limit defined by these two vertices, which
in turn define a line segment. Hence P ∗ is flat.

Now suppose P ∗ is flat and has the non-moving ver-
tices u∗0, u

∗
1, . . . , u

∗
k with k ≥ 2. Assume u∗0 and u∗k are

the extreme vertices of the limit segment and let T ∈ N∗
be such that ut0, u

t
1, . . . , u

t
k do not move for every t > T .

Thus we may assume that uti = u∗i for all i = 0, . . . , k.
First note that (ut0, u

t
k) is not an edge of P , because

otherwise P t is nonsimple for every t > T . Also note
that no infinite line of deflation passes through uti for
any i = 1, . . . , k − 1: any valid line of deflation through
these vertices splits the polygon into two chains, each
containing one of ut0 or utk; the vertices of one of these
chains must move due to the deflation, thus contradict-
ing the fact that ut0 and utk are non-moving vertices.

Let utj be a non-moving vertex of P t for some j ∈
{1, 2, . . . , k − 1} such that (utj , uj+1i

t) is not an edge of
P t and every vertex between utj and utj+1 is moving.
Note that such a j exists as P has no straight vertices.
In particular, vertex vtr adjacent to utj is moving. Let
t > T be such that after t deflation steps the pocket
chain Ct of P t is deflated and such that vtr is on Ct. This
means that vtr moves at step t. Because utj is adjacent to
vtr, then we have two cases: either the line of deflation



22nd Canadian Conference on Computational Geometry, 2010

of P t passes through utj , which cannot happen due to
the previous argument; or utj is also on the deflating
chain Ct. In this case utj will move with the vertices
of Ct to a new position contradicting the fact that it
is a non-moving vertex. Therefore, both these cases
are not possible, and hence utj is a moving vertex for
every j = 1, . . . , k− 1. Together with Lemma 7 we may
conclude that if P ∗ is flat then the deflation sequence
contains exactly two non-moving vertices. �

4 Polygons that deflate infinitely for every deflation
sequence

In the previous section we showed that every infinite
deflation sequence has a limit, and we characterized the
sequences that converge to flat limits. Observe that the
limit depends on the given infinite sequence, and not
only on the original polygon. In fact, different deflation
sequences of the same polygon may converge to different
limits. In [3], Demaine et al. give examples of two poly-
gons that deflate infinitely to a flat limit for well-chosen
deflation sequences, but for which there always exist de-
flation sequences that are finite. It is not too difficult
to see, for example, that the polygon in Figure 3 has
at least two different infinite deflation sequences that
converge to different limit points. Note however that
although the polygon in this example has different limit
points for different infinite deflation sequences, it also
admits sequences that deflate finitely.

a

b

c

d

Figure 3: A polygon that deflates infinitely for well-
chosen deflation sequences. Each of the chains between
(a, b), (b, c), (c, d), and (d, a) induces an infinitely deflat-
ing quadrilateral. Observe that at any step if we deflate
through any of the lines defined by ab, bc, cd, or da,
deflations will stop for that subchain. Therefore, each
infinite deflation sequence may converge to a different
limit, and there exists a sequence that deflates finitely.

We complete our study of deflations by stating some
facts about polygons that deflate infinitely for every de-
flation sequence. An example of such polygons is the
family of quadrilaterals described by Fevens et al. [6],
any deflation sequence of which has a flat limit. Given

a polygon that deflates infinitely for every deflation se-
quence, a natural question to ask is whether or not each
of these deflation sequences has the same limit, as in
the case of quadrilaterals. Although we fall short of
providing an answer to this question, the results of the
previous section, together with arguments similar to the
ones used throughout the paper can be used to obtain
the following proposition regarding polygons that de-
flate infinitely for every deflation sequence.

Proposition 10 Let P be a polygon that deflates in-
finitely for every deflation sequence.

(a) If the limit of every deflation sequence is flat, then
all these limits P ∗ are the same (up to an isome-
try of the plane) and every sequence flattens to the
longest edge of the polygon.

(b) If there exists a sequence for which P ∗ is not flat,
then there is at least one non-moving vertex in the
interior of an edge of the convex hull of P ∗.
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