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On a Dispersion Problem in Grid Labeling
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Abstract

Given k labelings of a finite d-dimensional grid, define
the combined distance between two labels to be the sum
of the ℓ1-distance between the two labels in each label-
ing. We present asymptotically optimal constructions of
k labelings of cubical d-dimensional grids which maxi-
mize the minimum combined distance.

1 Introduction

Let L1 and L2 be two bijections from the cells of an
n × n grid to a label set S of n2 symbols. Then each
symbol in S labels two cells, one in L1 and one in L2.
Define the combined distance between two symbols x
and y in S as the distance between the two cells in
L1 plus the distance between the two cells in L2 that
are labeled by x and y. How to arrange the symbols
of the two labelings such that the minimum combined
distance between any two symbols is maximized? We
refer to Figure 1 for an example.

Figure 1: Two labelings of a 3 × 3 grid. With the first
labeling fixed, the second labeling is one of 840 solutions for
which the minimum combined distance is 3.

This problem was posed at the open problems ses-
sion of CCCG 2009 [4] by Belén Palop, who formulated
the problem from her research with Zhenghao Zhang in
wireless communication. This problem has many appli-
cations to wireless communication, in particular, per-
mutation code generation [7, Chapter 9]. A permuta-
tion code uses a grid of symbols for each channel when
transmitting data over multiple channels; transmission
errors are more easily detected if the combined distance
between any pair of symbols in the grids is large.
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The problem is also related to Latin hypercube de-
signs [2, 3]. A Latin hypercube design (LHD) is an ar-
rangement of n points in a k-dimensional grid with n
distinct coordinates in each dimension, such that no two
points share a coordinate in any dimension. In other
words, it is a set of n non-attacking rooks in a k-dimen-
sional chessboard; for the sake of understanding, we will
prefer the term rook placement rather than LHD in this
article. LHDs are useful in obtaining approximation
models for black-box functions that may have too many
combinations of input parameters and need to be tested
on only a reduced subset of the combinations.

See [5] for a survey on related topics in graph labeling.

The grid labeling problem illustrated above was de-
fined for two labelings of a square grid, and can be natu-
rally generalized. We now introduce some formal defini-
tions. Throughout the article, we denote by 〈n 〉 the set
{0, 1, 2, . . . , n − 1}. We consider the d-dimensional grid
〈n 〉d, with n distinct coordinates in each dimension. A
labeling of 〈n 〉d is a bijection L : 〈n 〉d → 〈nd 〉 which
assigns a label of 〈nd 〉 to each grid cell of 〈n 〉d. For any
two labels x, y ∈ 〈nd 〉, we denote by dist(L, x, y) the
ℓ1-distance

∥

∥L−1(x) − L−1(y)
∥

∥

1
between the grid cells

of 〈n 〉d respectively labeled by x and y in the labeling
L. Given k labelings L1, . . . , Lk of 〈n 〉d, we define the
combined distance between the labels x, y ∈ 〈nd 〉 as

cd(L1, . . . , Lk, x, y) :=

k
∑

i=1

dist(Li, x, y),

and the minimum combined distance of L1, . . . , Lk as

mcd(L1, . . . , Lk) := min
x,y∈〈nd 〉

cd(L1, . . . , Lk, x, y).

We study the maximal value of this minimum:

γ(k, n, d) := max
L1,...,Lk

mcd(L1, . . . , Lk),

where L1, . . . , Lk range over all combinations of k label-
ings of 〈n 〉d.

The number γ(k, n, 1) has been studied in the context
of Latin hypercube designs [2, 3]. The following bounds
were previously known:

Theorem 1 (van Dam et al. [2, 3]) For k, n ≥ 2,

γ(k, n, 1) ≤
⌊

k

3
(n + 1)

⌋

.

Moreover, γ(2, n, 1) =
⌊√

2n + 2
⌋

for any n ≥ 2.
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We obtain asymptotically tight bounds on the num-
ber γ(k, n, 1) in the following theorem:

Theorem 2 For any integers k ≥ 2 and n ≥ 2,

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, 1) ≤ n − 1

(n/k!)1/k − 1
.

Our next theorem generalizes Theorem 2:

Theorem 3 For any integers k ≥ 2, n ≥ 2, and d ≥ 1,

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, d) ≤ n − 1

(nd/(dk)!)1/(dk) − 1
.

The following corollary is immediate:

Corollary 4 γ(k, n, d) = Θ(n1−1/k) for fixed k and d.

Let us briefly comment on the method we use to prove
the lower bound of Theorem 2. Instead of providing ex-
plicit but complicated formulas for the k labelings maxi-
mizing the combined distances, we use a more geometric
approach. We first provide simple and explicit formulas
for the k labelings only for certain values of n, and we
then use the geometric interpretation in terms of rook
placements to generate good labelings for arbitrary val-
ues of n. This approach enables us to restrict the proof
to friendly values of n, and thus to avoid unnecessary
technical calculations for general values of n. Let us un-
derline that even if we do not provide explicit formulas,
the proof is completely constructive: it provides a sim-
ple way to construct k-tuples of labelings of 〈n 〉k whose
minimum combined distance is at least the lower bound
of Theorem 2.

Observe that our lower bounds, in conjunction with
the upper bounds, yield a very simple O(knd)-time
constant-factor approximation algorithm for the opti-
mization problem of maximizing the combined distance
of k labelings of a d-dimensional grid, for fixed k and d.

2 Labelings with large minimum combined distance

We first construct k labelings of a 1-dimensional array
of length n with large minimum combined distance for
certain specific values of n: namely, we present this con-
struction only for n = kmk and m ≥ 2. For a fixed
integer m we construct k labelings B0, . . . , Bk−1 of the
array 〈 kmk 〉. To construct the labeling Bi, we first
assign a color αi(x) to each cell x of 〈 kmk 〉 such that

αi(x) :=
⌊ x

mi−1

⌋

mod m.

Intuitively, for 1 ≤ i ≤ k − 1, the cell x is colored by
αi(x) according to its ith least significant digit in its
m-ary decomposition. Observe that the color α0(x) is
always equal to 0. The labeling Bi is then defined for
all cells x ∈ 〈 kmk 〉 by

Bi(x) :=
(

x − kmk−1αi(x)
)

mod kmk.

Note that B0 is the identity permutation.

In other words, for all 0 ≤ p ≤ m − 1, the labeling
Bi cyclically permutes the set of all cells x with color
αi(x) = p, and the amplitude of this permutation is pro-
portional to p. In particular, we have αi(x) = αi(Bi(x))
and it is easy to describe the inverse permutation of Bi

for all labels x ∈ 〈 kmk 〉 as

B−1
i (x) =

(

x + kmk−1αi(x)
)

mod kmk.

Proposition 5 The minimum combined distance of the
k labelings B0, . . . , Bk−1 of 〈 kmk 〉 is at least kmk−1.

Proof. Let x and y be two distinct labels of 〈 kmk 〉,
and for 0 ≤ i ≤ k − 1, write

B−1
i (x) = x + kmk−1αi(x) + rikmk

and B−1
i (y) = y + kmk−1αi(y) + sikmk

for some integers ri and si. We consider two cases:
(1) If αi(x) = αi(y) for all i, then x − y is a non-

zero multiple of mk−1. Thus, for all i, the difference
B−1

i (x) − B−1
i (y) = x − y + (ri − si)kmk is also a non-

zero multiple of mk−1, and cd(B0, . . . , Bk−1, x, y) =
∑k−1

i=0

∣

∣B−1
i (x) − B−1

i (y)
∣

∣ ≥ kmk−1.
(2) Otherwise, αj(x) 6= αj(y) for some j. Then

cd(B0, . . . , Bk−1, x, y) ≥ |B−1
j (x)−B−1

j (y)|+ |x− y| ≥
|B−1

j (x) − B−1
j (y) − x + y| = kmk−1|αj(x) − αj(y) +

(rj − sj)m| ≥ kmk−1. The last inequality holds since
1 ≤ |αj(x) − αj(y)| ≤ m − 1. �

Example 6 For k = 2 and m = 3, this construction
yields the two labelings of 〈 18 〉 in Figure 2, with mini-
mum combined distance 6. The numbers on top are the
ternary decompositions of the array cell indices.

17

1,2,1 1,2,20,1,1 0,1,2 0,2,10,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,00,2,2 1,0,0 1,0,1 1,0,2 1,1,20,0,0

3 4 5 60 21 7 11 12 13 148 109 15 16 B0

9 15 57 1013 16

1,2,1 1,2,20,1,1 0,1,2 0,2,10,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,00,2,2 1,0,0 1,0,1 1,0,2 1,1,20,0,0

3 11 60 8 1 17 12 214 4 B1

Figure 2: The labelings B0 and B1 for k = 2 and m = 3.

3 Rook placements

We now interpret the minimum combined distance of
k labelings of a 1-dimensional array 〈n 〉 as the mini-
mum distance in a rook placement in the k-dimensional
hypercube 〈n 〉k. Let us first state a precise definition:

Definition 7 A (k, n)-rook placement is a subset R of
the k-dimensional hypercube 〈n 〉k with precisely one el-
ement in the subspace 〈n 〉p−1 × {q} × 〈n 〉k−p for each
1 ≤ p ≤ k and 0 ≤ q ≤ n − 1.

In other words, a (k, n)-rook placement is a maxi-
mal set of non-attacking rooks in 〈n 〉k, where a rook
positioned in (x1, . . . , xk) can attack the subspaces
〈n 〉p−1 × {xp} × 〈n 〉k−p for 1 ≤ p ≤ k (see Figure 3).
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Figure 3: The affine spaces a rook can attack.

There is a correspondence between k-tuples of la-
belings of the 1-dimensional array 〈n 〉 and (k, n)-rook
placements:

• given k labelings L1, . . . , Lk of 〈n 〉, the subset

R(L1, . . . , Lk) :=
{

(L−1
1 (x), . . . , L−1

k (x)) | x ∈ 〈n 〉
}

of 〈n 〉k is a (k, n)-rook placement;

• reciprocally, a (k, n)-rook placement R has n rooks,
whose pth coordinates are all distinct (for each
1 ≤ p ≤ k). If we arbitrarily label the rooks from 0
to n − 1, the order of the rooks according to their
pth coordinate defines a labeling Lp(R) of 〈n 〉.

This correspondence preserves metric properties: the
combined distance between two labels x and y in k label-
ings L1, . . . , Lk of 〈n 〉 is the ℓ1-distance between the two
rooks (L−1

1 (x), . . . , L−1
k (x)) and (L−1

1 (y), . . . , L−1
k (y)) in

the (k, n)-rook placement R(L1, . . . , Lk). We call mini-
mum distance of a finite point set S the minimum pair-
wise ℓ1-distance between two points of S.

To illustrate the interest of this geometric point of
view, let us first prove the upper bound of Theorem 2:

Lemma 8 For any integers k ≥ 2 and n ≥ 2,

γ(k, n, 1) ≤ n − 1

(n/k!)1/k − 1
.

Proof. We prove the result in the setting of rook
placements by a simple volume argument. Consider
a (k, n)-rook placement R with minimum distance δ.
Then the ℓ1-balls of radius δ/2 centered at the rooks
of R are disjoint and contained in [−δ/2, n− 1 + δ/2]k.
Since each ball has volume δk/k!, this yields the inequal-
ity nδk/k! ≤ (n− 1 + δ)k, and thus the upper bound of
the lemma. �

To prove the lower bound of Theorem 2, we will use
more general configurations of integer points in R

k to
obtain (k, n)-rook placements with large minimum dis-
tance, for all values of n. The principal ingredient of
our constructions is the following proposition:

Proposition 9 If there exists a set of n integer points
in Z

k with minimum distance δ such that the projection
of these points on each axis is an interval of consecutive
integers (with possible repetitions), then there exists a
(k, n)-rook placement with minimum distance δ.

Proof. Let S be such a set of n integers. We label
the points of S arbitrarily from 0 to n − 1. For each
direction i, we then construct a labeling Li of 〈n 〉 which
respects the order of the ith coordinate of the points
of S, and where points with equal ith coordinate are
ordered arbitrarily. Since the projection of S in each
direction covered an interval of integers, the distance
between two points in each direction can only increase
during this construction, and the minimum distance of
the (k, n)-rook placement R(L1, . . . , Lk) is at least that
of S. �

A simple way to obtain such point sets S on which
we can easily control the minimum distance is to use
lattices of R

k. Remember that a lattice of R
k is the set

of integer linear combinations of k linearly independent
vectors of R

k; see [6, Chapter 1]. We call a (k, n)-rook
lattice any sublattice L of the integer lattice Z

k whose
trace L ∩ 〈n 〉k on the hypercube 〈n 〉k is a (k, n)-rook
placement, and which contains ne1 (e1 is the first vector
of the canonical basis of R

k). Applying Proposition 9, a
good (k, ν)-rook lattice provides good (k, n)-rook place-
ments not only for n = ν, but for any larger value of n:

Proposition 10 If there exists a (k, ν)-rook lattice with
minimum distance δ, then there exists a (k, n)-rook
placement with minimum distance δ for all n ≥ ν − 1.

Proof. Let L be a (k, ν)-rook lattice of minimum dis-
tance δ. For n = ν − 1, consider the point configuration
L ∩ {1, . . . , ν − 1}k: it has minimum distance δ and
projects bijectively on {1, . . . , ν − 1} in each direction.
For n ≥ ν, consider the trace of L on 〈n 〉 × 〈 ν 〉k−1. It
projects bijectively on 〈n 〉 in the first direction and sur-
jectively on 〈 ν 〉 in all the other directions. The result
thus follows from Proposition 9. �

Example 11 (Rook placements in the square)
We consider two families of lattices of R

2 (see Figure 4):

(a) The lattice generated by (m, m) and (1, 2m + 1) is
a (2, 2m2)-rook lattice with minimum distance 2m.

(b) The lattice generated by (m+1, m) and (1, 2m+1)
is a (2, 2m2 + 2m + 1)-rook lattice with minimum
distance 2m + 1.

From these two families and using Proposition 10, we
derive the following lower bound in Theorem 1:

Proposition 12 For any n, γ(2, n, 1) ≥
⌊√

2n + 2
⌋

.

Proof. Let m be an integer. Since there exists
a (2, 2m2)-rook lattice with minimum distance 2m,
Proposition 10 implies

⌊√
2n + 2

⌋

= 2m ≤ γ(2, n, 1)
for any integer n with 2m2 − 1 ≤ n ≤ 2m2 + 2m − 1.
Similarly, since there exists a (2, 2m2 + 2m + 1)-rook
lattice with minimum distance 2m + 1, Proposition 10
implies

⌊√
2n + 2

⌋

= 2m + 1 ≤ γ(2, n, 1) for any integer
n with 2m2 + 2m ≤ n ≤ 2m2 + 4m. �
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Figure 4: Examples of two optimal families of rook lattices in the square. (a) Lattice generated by the vectors (m, m) and
(1, 2m + 1), for m = 3. (b) Lattice generated by the vectors (m + 1, m) and (1, 2m + 1), for m = 3.

We have seen in Lemma 8 that γ(2, n, 1) is bounded
by (n − 1)/(

√

n/2 − 1). Together with Proposition 12,

this implies that γ(2, n, 1) ∼
√

2n. In fact, using a simi-
lar but slightly refined packing argument as in our proof
of Lemma 8, van Dam et al. [2] proved that the bound
in Proposition 12 is in fact the exact value of γ(2, n, 1):

γ(2, n, 1) =
⌊√

2n + 2
⌋

.

The (k, kmk)-rook placement R(B0, . . . , Bk−1) is not
the trace of a lattice on 〈 kmk 〉 when k ≥ 3. However,
it is still sufficiently regular to apply Proposition 9:

Lemma 13 For any integers k ≥ 2 and n ≥ 2,

γ(k, n, 1) ≥ k

⌊

(n

k

)1/k
⌋k−1

.

Proof. Let m :=
⌊

(

n
k

)1/k
⌋

. Let S denote the set ob-

tained by translations of the (k, kmk)-rook placement
R(B0, . . . , Bk−1) by any integer multiple of kmke1. In
other words, S =

{

(x, B−1
1 (x), . . . , B−1

k−1(x)) | x ∈ Z
}

.

The trace of S on 〈n 〉 × 〈 kmk 〉k−1 projects bijec-
tively on 〈n 〉 on the first coordinate and surjectively
on 〈 kmk 〉 on all other coordinates. A similar analy-
sis as in the proof of Proposition 5 ensures that the
minimum distance of S, like the minimum distance of
R(B0, . . . , Bk−1), is at least kmk−1 too. Propositions 5
and 9 thus provide a (k, n)-rook placement whose min-
imum distance is at least kmk−1. �
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