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1 Introduction

Imagine a situation in which two (or more) robots are
required to capture a single rogue robot. We draw inspi-
ration from Kabaddi, a popular team sport originating
in South Asia, and study a discrete version of the game
as a vehicle to study this kind of multiagent pursuit
evasion problems. The game of Kabaddi involves two
teams occupying opposite halves of a field, each team
taking turns to send an “attacker” into the other half,
in order to win points by tagging or wrestling mem-
bers of the opposing team [11]. The attacker must
hold his breath during the whole attack and success-
fully return to his own half—the attacker continuously
chants “kabaddi, kabaddi, · · · ” to demonstrate holding
of the breath. There are several elements of this game
that distinguish it from other well-studied and similar
sounding games such as man-and-the-lion [7, 10], cops-
and-robber [4, 1, 5], robot-and-rabbit [4], and pursuit-
evasion [9, 3]. Perhaps the most significant difference
is that in kabaddi players of either side may capture
an opponent, while in these other games one side al-
ways plays the role of captors and the other evaders.
But there are several other differences as well, some of
which we highlight below.

In the man-and-the-lion game, for instance, the chase
occurs inside a circular region, both players have the
same maximum speed, and it is known that the man
can evade capture indefinitely. In contrast, the game of
kabbadi pits a single attacker against multiple defend-
ers. The other games such as the cops-and-robber and
pursuit-evasion differ from kabaddi in the way capture
occurs as well as the information about the evader’s po-
sition. For instance, the current position of all the play-
ers is public information in kabaddi while the position
of the robber or evader is often assumed to be unknown
to cops or pursuers. Furthermore, it is also typically as-
sumed that each cop (robot) follows a fixed trajectory
that is known to the robber (rabbit). This makes sense
in situations where the defenders (cops) have fixed pa-
trol routes, but not in interactive games like kabaddi.
The problems and results in the graph searching lit-
erature are also of a different nature than ours [2, 6].
The pursuit-evasion games have also focused on visibil-
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ity based capture, where it is sufficient for some pursuer
to “see” the evader—both infinite visibility or limited-
range visibility models have been considered [3, 5]. By
contrast, kabaddi requires a physical capture that leads
to a very different set of strategies and game outcomes.
(The book by Nahin [8] offers a nice historical perspec-
tive on various pursuit-evasion type games.) With this
background, let us now formalize our model of kabaddi.

1.1 The Standard Model

We assume that the game is played on a n × n grid
S, whose cells are identified as tuples (i, j), with i, j ∈
{1, 2, . . . , n}. We focus largely on the game between one
attacker and two defenders, which already proves to be
quite challenging and intricate to analyze. We use the
letters A and D to denote the attacker and a defender,
respectively. When there are multiple defenders, we use
subscripts such as D1, D2, etc. We need the concepts
of neighborhood, moves, and capture to complete the
description of the game.

Neighborhood. The neighborhood N(p) of a cell
p = (i, j) is the set of (at most) 9 cells, including p it-
self, adjacent to p, or equivalently the set of all cells with
L∞ distance at most 1 from p. In Figure 1, the neigh-
borhood of A is shown with a box around it. Slightly
abusing the notation, we will sometimes write N(A) or
N(D) to denote the neighborhood of the current posi-
tion of A or D.

Figure 1: The standard model of kabaddi. A can cap-
ture the defender closer to it, which is inside N(A). The
defenders can capture A at any position in the shaded
region, which is the common intersection of their neigh-
borhoods. The right figure shows how defenders try to
surround the attacker in the real game of kabaddi.

Moves. The attacker and the defenders take turns
making their moves, with the attacker moving first. In
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one step, the attacker and the defenders can move to
any cell in their neighborhood. All the defenders can
move simultaneously in one step.

Capture. A captures a defender D if it is the unique
defender lying inside the neighborhood of A. That is,
with two defenders, D1 is captured when D1 ∈ N(A)
and D2 6∈ N(A). (Notice that A only needs to enclose
a defender within its neighborhood to capture it.)

Conversely, the defenders capture the attacker, when
A lies in the common intersection of the two defenders’
neighborhoods. That is, A ∈ (N(D1) ∩N(D2)).

Game Outcome. The attacker wins the game if he
can capture all the defenders, and the defenders win
the game if they can capture the attacker. If neither
side wins, then the game is a tie.

This particular form of capture has a tendency to
make defenders always stick together, and fails to model
the real world phenomenon where defenders try to “sur-
round” the attacker—see figure above. We therefore
introduce a minimum separation condition on the de-
fenders in the following way:

no defender can be inside the neighborhood of
another defender.

These rules together define our standard model of
kabaddi. Other models can be obtained by varying the
definition of the neighborhood and relaxing the separa-
tion condition for defenders, and we obtain some results
to highlight the impact of these modeling variables.

In the actual game of kabaddi, the attacker must hold
his breath during the attack. We handle this constraint
implicitly by analyzing the worst-case number of moves
it takes to achieve a win for the attacker—that is, the
duration of the game acts as a proxy for the length of
time the breath must be held.

1.2 Our Results

We first consider the simple setting of a single attacker A
against a single defender D, and show that the attacker
can always capture D in O(n) number of steps, which is
clearly optimal, upto a constant factor, in the worst-case

The game becomes more challenging to analyze with
two defenders, where the attacker continuously runs the
risk of being captured himself, or have the defenders
evade him forever. Our main result is to show that
the attacker has a winning strategy in worst-case O(n2)
moves. One important aspect of the standard model
is the separation requirement for the defenders—each
must remain outside the neighborhood of the other.
Without this restriction, we show that the two defend-
ers, whom we call strong defenders to distinguish from
the standard ones, can force a draw: neither the attacker
nor a defender can be captured. A further modification
of the model, which disallows the diagonal moves, tips

the scale further in the favor of strong defenders, allow-
ing them to capture the attacker in O(n2) steps.

Extending the analysis to more than two players is
a topic for ongoing and future work, and seems non-
trivial. In the standard model, it is not obvious that
even Θ(n) defenders can capture the attacker, nor it is
obvious that the attacker can win against k defenders,
for k > 2. (The definition of capture remains the same:
two defenders are enough to capture the attacker.) Due
to lack of space, most of the proofs are omitted from
this abstract.

2 Playing against a Single Defender

We begin with the simple case of the attacker playing
against a single defender. Besides being of interest in its
own right, it also serves as building block for the more
complex game against two defenders. We show that in
this case the attacker always as a winning strategy in
O(n) moves.

Throughout the paper, we assume that the grid is
aligned with the axes, and use ∆x = |Dx − Ax| and
∆y = |Dy −Ay|, resp., for the x (horizontal) and the y
(vertical) distance between A and D.

Theorem 1 The attacker can always capture a single
defender in a n× n game of kabaddi in O(n) moves.

Proof. The attacker’s basic strategy is to chase the
defender towards a wall, keeping him trapped inside a
continuously shrinking rectangular region. Specifically,
as long as min{∆x,∆y} > 0 on its move, the attacker
makes the (unique) diagonal move towards the defender,
reducing both ∆x and ∆y by one. Because the grid is
n × n, the attacker can make at most n such moves
before either ∆x or ∆y becomes zero. Without loss of
generality, suppose ∆x = 0. From now on, the attacker
always moves to maintain ∆x = 0 while reducing ∆y by
one in each move. Because ∆y can be initially at most
n, the attacker can reduce to it one in at most n − 1
moves, at which point it has successfully captured the
defender because both ∆x and ∆y are at most 1. This
completes the proof. �

3 Playing against Two Defenders

The game is more complex to analyze against two de-
fenders, and does not seem to admit a simple non-
adaptive strategy. We begin by isolating some neces-
sary conditions for the game to terminate, or for the
next move to be safe. We then discuss the high level
strategy for the attacker, and show that it can pursue
the defenders using that strategy without being captured
itself. Together with a bound for the duration of the
pursuit, this yields our main result of O(n2) steps win
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for A in the standard model. We denote the two de-
fenders by D1 and D2, and use D to refer to a non-
specific defender when needed. Throughout the game,
we ensure that whenever A makes a move, it is safe in
the sense that it cannot be captured by the defenders in
their next move.

Lemma 2 On A’s turn, if max{∆x,∆y} ≤ 2 for at
least one of the defenders, then A can capture a de-
fender in one step. Conversely, on the defenders’ turn,
if max{∆x,∆y} > 2 for one of the defenders, then they
cannot capture A on their move.

Proof. We first observe that neither defender can be
inside the neighborhood of A, namely, N(A). This holds
because a single defender inside N(A) must have been
captured in A’s last move and if both the defenders are
inside N(A), then they would have captured A in their
last move. Thus, we must have max{∆x,∆y} ≥ 2 for
both the defenders.

Let D1 be the defender that satisfies the conditions
of the lemma, meaning that max{∆x,∆y} = 2. If both
the defenders satisfy the condition, then let us choose
the one for which ∆x + ∆y is smaller; in case of a tie,
choose arbitrarily. Without loss of generality, assume
that D1 lies in the upper-left quadrant from A’s position
(i.e. north-west of A). We now argue that A can always
capture D1 as follows. See Figure 2.

Figure 2: Illustrating the three cases in Lemma 2: ∆x+
∆y = 2, 3 and 4. The shaded area is the region that
cannot contain the second defender.

If ∆x + ∆y = 2, then we must have either ∆x =
2,∆y = 0 or ∆x = 0,∆y = 2. In the former case,
A can capture D1 by moving to its x-neighbor (shown
in the left figure), and in the latter by moving to its
y-neighbor. Since the second defender must lie outside
N(A)∪N(D1), this move cannot cause A to be captured.
Similarly, if ∆x + ∆y = 3, then we have either ∆x =
2,∆y = 1, or ∆x = 1,∆y = 2. In both cases, A captures
D1 by moving to its north-west neighbor (Ax−1, Ay+1),
as shown in the middle figure. Observe that, by the
minimum separation rule, if there is a defender at (Ax−
2, Ay + 1), then there can’t be one at (Ax − 1, Ay + 2),
and vice versa ensuring the safety of this move—there
also cannot be a defender at (Ax, Ay + 2) because that
would contradict the choice of the closest defender by
distance.

Finally, if ∆x + ∆y = 4 (shown in the right figure),
then A captures D1 by moving to (Ax − 1, Ay + 1).
This is a safe move because the only position for D2

that can capture A is at (Ax, Ay + 2), but in that case
D2 is the defender with the minimum value of ∆x+∆y,
contradicting our choice of the defender to capture. This
completes the first claim of the lemma. For the converse,
suppose that ∆x > 2 for defender D1. Then, after the
defenders’ move, A is still outside the neighborhood of
D1, and so A is safe. This completes the proof. �

The attacker initiates its attack by first aligning itself
with one of the defenders in either x or y coordinate,
without being captured in the process. The following
two technical lemmas establish this.

Lemma 3 A can move to the boundary in O(n) moves
without being captured.

Lemma 4 By moving along the boundary, A can al-
ways force either ∆x = 0 or ∆y = 0 for one of the
defenders in O(n) moves, without being captured.

The Second Phase of the Attack

Having reached the starting position for this second
phase of the game, we assume without loss of gener-
ality that A is at the bottom boundary, and that after
A’s last move, ∆x = 0 for one of the defenders. From
now on, A will always ensure that ∆x ≤ 1 for one of the
defenders after each of A’s moves. The x-distance can
become ∆x = 2 after the defenders’ move but A will
always reduce it to 1 in its next move.

By Lemma 2, if both ∆x and ∆y are at most 2, then
A can win the game. On the other hand, if the players
are too far apart, then both sides are safe for the next
move. Thus, all the complexity of the game arises when
the distance between A and the defenders is 3, requiring
careful and strategic moves by both sides. We show that
A can always follow an attack strategy that ensures a
win in O(n2) steps, while avoiding capture along the
way.

In order to measure the progress towards A’s win, we
use the distance from A’s current position to the top
boundary of the grid while ensuring that ∆x ≤ 1 con-
tinues to hold. In particular, define Φ(A) as the gap
between the current y position of A and the top bound-
ary. That is, Φ(A) = (n−Ay), where this gap is exactly
n− 1 when the second phase begins with A on the bot-
tom boundary. We say that A makes progress if Φ(A)
shrinks by at least 1, while ∆x remains at most 1 for
some defender. Clearly, when the Φ(A) reaches zero,
A has a guaranteed win (by Lemma 2). If the attacker
succeeds in capturing a defender, then we consider that
also progress for the attacker.

Lemma 5 On A’s move, if ∆y = 3 and ∆x = 0 holds
for some defender, then A makes progress in one move.
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Lemma 6 On A’s move, if ∆y = 3 and ∆x = 1 holds
for some defender, then A makes progress in O(n) num-
ber of moves.

Lemma 7 If ∆y = 3 and ∆x = 2 for some defender
say D1 then A may make progress in O(n) moves.

We can now state our main theorem.

Theorem 8 In the standard model of kabaddi on a n×
n grid, the attacker can capture both the defenders in
O(n2) worst-case moves.

4 Playing Against Strong Defenders

In the standard model, each defender must remain
outside the neighborhood of other defenders; that is,
Di 6∈ N(Dj), for all i, j. The defenders become more
powerful when this requirement is taken away. Let us
call these stronger defenders. In this case we explore
what happens when we remove the stipulation that the
defenders cannot be within each other’s neighborhoods.
This creates two stronger defenders and as a result cre-
ates a game where ideal play means not only can the
attacker not win, but the defenders cannot either. We
assume that play starts with defenders already in a side-
by-side position, that is, ∆x + ∆y = 1 with respect to
D1 and D2’s coordinates.

Theorem 9 Under the strong model of defenders,
there is a strategy for the defenders to avoid capture for-
ever. At the same time, the attacker also has a strategy
to avoid capture.

5 Strong Defenders with Manhattan Moves

Thus, in the standard model but with strong defenders,
we have a tie, and neither side can guarantee a win.
In the following, we show that if we disallow the di-
agonal moves, permitting a player to move only to its
left, right, up, and down neighbors, then the defenders
have a winning strategy. That is, the movement metric
is Manhattan metric—a player can only move to a cell
within the L1 distance of 1 from its current cell. The
definition of the capture, however, remains the same as
in the standard model.

Theorem 10 Two strong defenders playing under the
Manhattan moves model can always capture the attacker
in O(n2) moves.

6 Closing Remarks and Extensions

We introduced an abstract discrete model for the game
of kabaddi. To the best of our knowledge, this is the
first attempt to formally model and analyze the game.

Our analysis shows that even with two defenders the
game reveals significant complexity and richness. The
game also shows surprising sensitivity to the modeling
parameters that control the moves and the power of
players.

Our work poses as many open questions as it answers.
First, can the attacker win against two defenders in
o(n2) moves? We suspect that an O(n) winning strat-
egy exists. The game against more than two defenders
seem particularly interesting. What is the outcome of
the game in the standard model against d > 2 defend-
ers? The minimum separation rule leads to some pesky
modeling problems because the attacker could sit in a
corner cell and not be captured. So some modification
is needed in the rules to avoid such deadlocks.
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