
CCCG 2010, Winnipeg MB, August 9–11, 2010

I/O Efficient Path Traversal in Well-Shaped Tetrahedral Meshes

Craig Dillabaugh ∗

Abstract

We present a data structure which represents a well-
shaped convex tetrahedral mesh, M, in linear space
such that path traversals visiting a sequence of K tetra-
hedra require O (K/ lgB) I/O operations in the exter-
nal memory model. As applications of our structure we
show how to efficiently perform axis parallel box queries
and how to report the intersection of M with an arbi-
trarily oriented plane.

1 Introduction

Traversal of a path visiting the elements of a data struc-
ture is a situation that commonly arises in computing.
For example, reporting an elevation contour on a dig-
ital terrain model, finding a path between nodes in a
network, and even searching in a tree structure, can all
be viewed as traversing a path. In representing very
large graphs in the external memory setting, the graph
is often partitioned into blocks which correspond to the
disk blocks in memory. An effective partitioning of the
graph permits the traversal of a path without incurring
a large cost in terms of I/Os (input-output operations
that occur each time a new block is visited). Nodine et
al. [8] first studied the problem of graph blocking, and
derived bounds for path traversal in several classes of
graphs. Agarwal et al. [2] describe a O (N) space data
structure for planar graphs of bounded degree d, that
permits traversal of a path visiting a sequence of K
vertices in O (K/ logdB) I/Os. Our own research, [4],
examined succinct representions of such graphs while
maintaining the O (K/ logdB) traversal bound.

In this paper we explore representing a tetrahedral
mesh,M, in a manner which permits I/O efficient path
traversal. We assume that M is well-shaped, by which
we mean that the aspect ratio of each tetrahedron is
bounded by a constant. This assumption is valid for
instance for mesh generation algorithms that enforce the
well-shaped property on their output meshes [6].

1.1 Results

We present a representation for well-shaped convex
tetrahedral meshes in R3, permitting efficient path
traversal in the external memory setting. We partition

∗Computational Geometry Lab, School of Computer Science,
Carleton University, cdillaba@connect.carleton.ca

the dual graph ofM into regions and store these regions
in disk blocks. We also construct fixed-size neighbour-
hoods around the vertices forming the boundaries be-
tween the regions, and store a collection of these neigh-
bourhoods in blocks. I/O efficiency of path traversal
is guaranteed by the fact that the number of vertices
we can traverse every time we encounter a boundary
vertex (tetrahedron in the primal) is bounded from be-
low. Our mesh representation has two key requirements.
First we must be able to partion M’s dual into block
sized regions, and secondly the number of boundary ver-
tices occurring at the intersection of the regions must be
small. We will demonstrate that these requirements can
be met for well-shaped meshes.

We give a representation of a well-shaped convex
tetrahedral mesh that can be stored in O (N) space and
that permits traversal of a path visiting a sequence of
K tetrahedra in O (K/ lgB) 1 I/Os. We have not yet
completed detailed analysis of the pre-processing time,
but the geometric separator algorithm we employ [7] can
partition a mesh in scan(N) I/Os. Since the recursive
partitioning will require no more than O(logN) steps
the preprocessing requires at worst O(logN · scan(N))
I/Os. As applications of our technique, we demonstrate
how our structure can be used to report the intersec-
tion of M with an axis-parallel box, or an arbitrarily
oriented plane H, in O (K/ lgB) I/Os. For axis-parallel
box queries, the Priority R-Tree [1] permits reporting in
O((N/B)2/3 + K/B) I/Os, but cannot efficiently han-
dle arbitrarily oriented plane queries. In each case K
is the total number of tetrahedra intersecting the query
box, or plane, respectively. Further, we note that the
(N/B)2/3 term for the Priority R-Tree is the search time
in R3, which we do account for in our analysis.

2 Mesh Partitioning

The tetrahedral meshM is composed of vertices, edges,
faces, and tetrahedra. The vertices, edges and faces
form the skeleton of the mesh, and we say a tetrahedron
is adjacent to elements of the skeleton that compose its
boundary. Two tetrahedra are adjacent if and only if,
they share a face. Let M∗ be the dual graph of M.
For each tetrahedron t ∈M,M∗ contains a vertex v(t)
corresponding to t. Two vertices, v(t) and v(t′), are
connected by an edge inM∗ if the corresponding tetra-

1Unless otherwise stated we use lg to represent log4.



22nd Canadian Conference on Computational Geometry, 2010

hedra share a face. Exclusive of the outer face (which
we do not represent in M∗) the degree of any vertex in
M∗ is at most 4.

For tetrahedron t we let R(t) be the radius of the
smallest enclosing sphere of t, and r(t) be the radius of
the largest sphere that can be inscribed in t. The aspect
ratio of t, denoted ct, is defined as the ratio of these two
radii, ct = R(t)/r(t). If the largest aspect ratio of each
tetrahedron t ∈ M is bounded by a constant, c, then
we say M is well-shaped.

In a geometric graph a d dimensional coordinate is
associated with each vertex. These coordinates yield an
embedding of the graph in Rd. Miller et al. [7] studied
the problem of finding separators for geometric graphs.
More specifically they developed a technique for finding
separators for k-ply neighbourhood systems defined as
follows.

Definition 1 ([7]) A k-ply neighbourhood system in
d dimensions is a set B1, . . . , Bn of n closed balls in Rd

such that no point in Rd is strictly interior to more than
k balls.

The authors were able show that separators could be
found on several concrete classes of graphs that can be
represented as k-ply neighbourhood systems. The au-
thors extend this work to the class of α-overlap graphs;
they are defined as follows:

Definition 2 ([6]) Let α ≥ 1 be given, and let
(B1, . . . , Bn) be a 1-ply neighbourhood system. The α-
overlap graph for this neighbourhood system is the undi-
rected graph with vertices V = 1, . . . , n and edges:

E = {(i, j) : Bi ∩ (α ·Bj) 6= ∅ ∧ (α ·Bi) ∩Bj 6= ∅}

For the class of α-overlap graphs the paper’s main
result is summarized in Lemma 1.

Lemma 1 ([6]) Let G be an α-overlap graph in a fixed
dimension d. Then G has an O

(
α · n(d−1)/d + q(α, d))

)
separator that (d+ 1)/(d+ 2)-splits.

In our setting d = 3, and α is fixed, thus the q(α, d)
term, which is a function of two constants (representing
the maximum degree of a vertex), is constant, and we
are left with a separator of size O

(
n2/3

)
. The geometric

separator can also be used to find a vertex and edge
separator on a well-shaped tetrahedral mesh [6]. Next
we show that the dual graph is well-shaped and the
separator can likewise be applied to partition M∗.

Lemma 2 Let M be a tetrahedral mesh where each
tetrahedron t ∈ M has aspect ratio bounded by c. Let
M∗ be the dual graph of M, then M∗ is a subgraph of
an α-overlap graph for α = 2c.

Proof. Consider the following neighbourhood system.
Let v(t) ∈ M∗ be a vertex corresponding to tetrahe-
dron t ∈ M. Let b(t) the the largest inscribed ball in
t, with radius r(t) and centred at point p(t). The col-
lection of balls B = {b(1), . . . , b(n)} correspond to the
n tetrahedra of M and the vertices of M∗, and form
a 1-ply system. No two balls can overlap, since each is
inscribed within a single tetrahedron. We show that B
forms an α-overlap graph, for α = 2c.

Since each b(t) is maximal, it touches each of the four
faces of t at a point. Let B(t) be the smallest ball that
wholly contains t, recall that this ball has radius R(t).
Furthermore let the point P (t) be the centre of B(t).
Since B(t) wholly contains t, it also contains b(t) and its
centre p(t). Therefore, the distance between the centres
of these two balls, P (t) and p(t), is less than the radius,
R(t), of the larger ball. Consider the ball of radius 2R(t)
centered at p(t). Since its distance to P (t) is less than
R(t), this ball contains both P (t) and the entire ball
B(t), which wholly contains t.

For i = 1, . . . , 4, let b(i) ∈ B represent the neighbours
of v(t) in M∗. Each b(i) touches the face of t in M
across which its corresponding tetrahedron is adjacent
to t. The ball centered at p(t) of radius 2R(t) fully
contains t (and all its faces) and thus intersects each of
these balls.

The aspect ratio of all t ∈M is bounded by c, so for
the aspect ratio, c(t), of any tetrahedron, we have that
c(t) ≤ c. Increasing the radius of a ball b(t) to 2R(t) is

equivalent to 2R(t)
r(t) r(t) = 2c(t)·r(t) ≤ 2c·r(t). Thus, the

overlap graph is an α-overlap graph with α = 2c. �

Lemma 3 Given the dual graph of a tetrahedral mesh
with bounded aspect ratio c, there is a partitioning algo-

rithm which produces a O
(
n

2
3

)
separator which 4

5 -splits

M∗.

Proof. By Lemma 2, we demonstrated that M∗ is a
subgraph of an α-overlap graph for α = 2c. Apply-

ing the separator theorem of Lemma 1 yields a O
(
n

2
3

)
separator that 4

5 -splits M∗. �

This separator is sufficient to partition M∗, but we
must still show that it can be recursively applied to
split M∗ into block sized regions while bounding the
total number of boundary vertices. In Lemma 4 we
extend the result of [5] on planar graphs to well-shaped
tetrahedral meshes.

Lemma 4 An n-vertex dual graph, M∗, of a well-
shaped tetrahedral mesh can be divided into O (n/r) re-
gions with no more than r vertices each, and O

(
n

r1/3

)
boundary vertices in total.

Proof. By Lemma 3 we can subdivide the dual graph
M∗, on n vertices, into two regions of size δn and



CCCG 2010, Winnipeg MB, August 9–11, 2010

(1 − δ)n for 1
5 ≤ δ ≤ 4

5 with a separator of size

β = O
(
n

2
3

)
. Each region retains the vertices in the

separator (boundary vertices), and the separator is re-
cursively applied to the new regions until we have re-
gions of maximum size r.

Let v be a boundary vertex in the resulting sub-
divided dual graph. Let d(v) be one less than the
number of regions that contain v, and let D(n, r) be
the sum of the d(v)’s over all boundary vertices for
a graph of size n with regions of maximum size r.
D(n, r) can be calculated by the recurrence: D(n, r) ≤
cn2/3 +D(δn+O

(
n2/3

)
, r) +D((1− δ)n+O

(
n2/3

)
, r)

for n > r, and D(n, r) = 0 for n ≤ r, where c > 1 is a
constant, and 1

5 ≤ δ ≤
4
5 . It can be shown by induction

that D(n, r) ∈ O
(

n
r1/3

)
. Since all boundary vertices

have d(v) ≥ 1 this value also bounds the total number
of boundary vertices. �

3 Data Structure and Navigation

We apply the recursive partitioning algorithm on M∗
to produce regions of at most B vertices, where B is
the disk block size. Each region is stored in a sin-
gle block in external memory. The block stores both
the dual vertices and the corresponding geometry from
M. Next, around each boundary vertex we identify a
neighbourhood which we call its α-neighbourhood. The
α-neighbourhood is selected by performing a breadth
first search, starting at the boundary vertex, and re-
taining the subgraph of M∗ induced on the first α =√
B vertices encountered. We can store the regions in

O (N/B) blocks, and the O
(
N/
√
B
)
α-neighbourhoods

in O (N/B) blocks. Thus the total space is linear.
To traverse the data structure, assume that we start

with some tetrahedron t interior to a region for which
the corresponding block is loaded. We follow the path
to a neighbour of t. If the neighbour is a boundary
vertex we load the α-neighbourhood. Since M∗ is of
bounded degree loading an α-neighbourhood guarantees
at least log4

√
B = O (lgB) progress along the path

before another I/O is incurred. A path of length K can
be traversed with O (K/ lgB) I/Os. We summarize our
results by the following theorem.

Theorem 5 Given a convex tetrahedral mesh, M, of
bounded aspect ratio, there is an O (N/B) block repre-
sentation of M that permits traversal of a path which

visits a sequence of K tetrahedra of M using O
(

K
lgB

)
I/Os.

4 Applications

We now demonstrate the application of our data struc-
tures for reporting the results of box and plane inter-

section queries.
Depth First Traversal: To begin we demonstrate
how we can perform a depth first traversal on a mesh
represented using our structures, as intersection queries
can be answered as special cases of depth first traversal.
A challenge in performing depth first traversals in M∗
is that depth first traversal algorithms generally mark
vertices as visited to avoid revisiting them from another
execution branch. In our data structure, vertices may
appear in multiple blocks, and loading all copies of a ver-
tex to mark them as visited destroys the I/O efficiency
of the structure. Thus we need a means of determining
if a vertex in M∗ (tetrahedron in M) has already been
visited. This can be achieved using the following lemma
based on De Berg et al. [3].

Lemma 6 ([3]) Given a convex tetrahedral mesh M
and a tetrahedron ts ∈ M, then for every tetrahedron
(t 6= ts) ∈ M, a unique entry face can be selected such
that the edges in the dualM∗ corresponding to the entry
faces implicitly form a tree rooted at t∗s ∈M∗.

The entry faces are selected by picking a special tetra-
hedron ts and a reference point ps interior to ts. We
perform a depth first traversal of M∗ on the implicit
tree rooted at t∗s. The selection of entry faces is based
entirely on ps and the geometry of the current vertex of
M∗ (recall that each dual vertex stores the correspond-
ing tetrahedron geometry). Depth first traversal in a
tree does not require the use of mark bits.

We now address the problem of reporting the features
of the mesh skeleton during traversal without double
reporting. Consider the point ps, and assume that the
endpoints of no line segment are collinear with ps and
that no three points defining a face are co-planar with ps
(these assumptions can be removed, but we omit details
here). With respect to a tetrahedron, t, we say that any
vertex, line, or face adjacent to t is invisible if the line
connecting ps with any point on that feature intersects
the interior of t, otherwise we say the feature is visible.
For any element k on the skeleton ofM the neighbour-
hood of k is the collection of tetrahedra adjacent to k.
We give without proof the following lemma and theo-
rem. The lemma leads to a technique for reporting the
skeleton without duplicates, while the theorem summa-
rizes our results for depth first traversal.

Lemma 7 For any element k on the skeleton of M,
there is one, and only one, tetrahedron t in the neigh-
bourhood of k, for which k is invisible with respect to
ps.

Theorem 8 Given a convex well-shaped tetrahedral
mesh M of N tetrahedra, M can be represented in lin-
ear space such that from an arbitrary tetrahedra, t ∈M,
a depth first traversal can be performed that reports each



22nd Canadian Conference on Computational Geometry, 2010

tetrahedron in M once, and all features on the skeleton
of M without duplication in O (N/ lgB) I/Os.

Box Queries: Assume we are given an axis paral-
lel box in R3. Select as a starting point one of the
box’s corner points, and assume we are given the tetra-
hedron t ∈ M containing this point. We modify the
entry face selection rule so that only faces from among
those that intersect the interior of the box can be se-
lected. We then build an implicit tree inM∗ that visits
all tetrahedra that intersect the box interior. Again us-
ing our structure this allows us to report the intersection
in O (K/ lgB) I/Os.
Plane Intersection Queries: As a visualization tool,
we wish to intersect a convex tetrahedral meshM by a
plane H and report the intersection of M and H. Let
K be the number of tetrahedra in M intersected by
H, including tetrahedra that intersect H only in their
skeleton. Further, assume that we are given some tetra-
hedra ts ∈ T that is part of the intersection set. The
intersection of M by H produces a 2 dimensional pla-
nar subdivision mapped onto H which we will denote
MH . Faces in MH correspond to the intersection of
H with the interior of a tetrahedron t ∈ M. Edges in
MH correspond to the intersection of H with a face of t,
while vertices correspond to the intersection of H with
an edge of t. A face of t ∈ M which lies directly on
H appears as a face in MH . Likewise edges and ver-
tices fromM that fall exactly on H appear as edges and
vertices respectively on MH .

Let H+ be the open half-space above H, and H− the
open half-space below H. Let M̂H be the set of tetrahe-
dra in M which intersect both H and H+. Tetrahedra
in M̂H have some point in their interior in H+ and
intersect H. We select entry faces as before with one
minor modification. We measure the distance between
ps and tetrahedron t on the plane H, and disqualify as
a candidate entry face any face which does not extend
into H+.

Lemma 9 It is sufficient to visit the tetrahedra in M̂H
to report all faces, edges, and vertices of MH .

Proof. We must show that every vertex, face, or edge
in M∪H is adjacent to a tetrahedron t ∈ M̂H. A face
that lies exactly on H separates two tetrahedra one of
which must lie inH+. Likewise any edge or vertex which
lies directly on H is adjacent to a tetrahedron in H+.
Since these tetrahedron are adjacent to features on H
they are included in M̂H and therefore are reported. �

Lemma 10 Let t be a tetrahedron in M̂H. Let t′ ∈
M be the tetrahedron adjacent to t′ across the face
entry(t), then t′ is also an element of M̂H.

Now consider the dual graph M∗ of M. Selecting
the tetrahedra in M̂H, defines a subset of the vertices
ofM∗. Let M̂∗H be the subgraph induced on this subset.

Lemma 11 Defining the set of entry faces as above
produces an implicitly tree rooted at v(ts) on M̂∗H.

Proof. The proof is essentially the same as for Lemma
6. Since the entry edges are still unique, there is no dan-
ger of introducing cycles. By Lemma 10 each entry face
leads to another tetrahedron in M̂H, so connectivity is
maintained. �

Lemma 11 leads to a simple traversal algorithm for
reporting the intersection of M with H. We perform a
depth first traversal of M̂∗H on the implicit tree defined
by the entry edges and report the intersection of each
tetrahedron with H. If we visit a total of K tetrahedra
the total path length of the traversal is O (K) steps, so if
we represent M̂∗H with the I/O efficient representation
ofM we can report the intersection in O (K/ lgB) I/Os.

The correctness of the box query algorithm does not
rely on the fact that the box is axis parallel. In fact given
a starting point interior to any arbitrarily oriented con-
vex shape we can report the intersection in O (K/ lgB)
I/Os. Plane intersection can be viewed as a degenerate
case of reporting an arbitrarily oriented box query with
a box of depth zero. For both the box and plane in-
tersection queries we have presented we have assumed
that we are given a starting tetrahedron ts, interior to
the query region. Efficiently finding ts represents the
next step in our research.

References

[1] L. Arge, M. de Berg, H. Haverkort, K. Yi The priority
R-tree: A practically efficient and worst case optimal
R-tree ACM Transactions on Algorithms, 4(1), 2008.

[2] P.K. Agarwal, L. Arge, T.M. Murali, K.R. Varadarajan,
and J.S. Vitter I/O-efficient algorithms for contourline
extraction and planar graph blocking. SODA, 117-126,
1998.

[3] M. de Berg, M. van Kreveld, R. van Oostrum, and M.H.
Overmars Simple traversal of a subdivision without
extra storage. Int. J. Geo. Info. Science, 11(4):359-373,
1997.

[4] C. Dillabaugh, M. He, A. Maheshwari, and N. Zeh
I/O and space efficient path traversal in planar graphs.
ISAAC, 1175-1184, 2009.

[5] G. N. Frederickson Fast algorithms for shortest paths
in planar graphs, with applications. SIAM J. Comput.,
16(6):1004-1022, 1987.

[6] G. L. Miller, S.-H. Teng, W.P. Thurston, and S.A.
Vavasis Geometric separators for finite-element meshes.
SIAM J. Sci. Comput., 19(2):364-386, 1998.

[7] G. L. Miller, S.-H. Teng, W.P. Thurston, and S.A. Vava-
sis Separators for sphere-packings and nearest neighbor
graphs. J. ACM, 44(1):1-29, 1997.

[8] M.H. Nodine, M.T. Goodrich, and J.S. Vitter Blocking
for external graph searching. Algorithmica, 16(2):181-
214, 1996.


