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Approximate Euclidean Ramsey theorems
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Abstract

According to a classical result of Szemerédi, every dense
subset of 1, 2, . . . , N contains an arbitrary long arith-
metic progression, if N is large enough. Its analogue
in higher dimensions due to Fürstenberg and Katznel-
son says that every dense subset of {1, 2, . . . , N}d con-
tains an arbitrary large grid, if N is large enough. Here
we present geometric variants of these results for sep-
arated point sets on the line and respectively in the
Euclidean space: (i) every dense separated set of points
in some interval [0, L] on the line contains an arbitrary
long approximate arithmetic progression, if L is large
enough. (ii) every dense separated set of points in the
d-dimensional cube [0, L]d in R

d contains an arbitrary
large approximate grid, if L is large enough. A fur-
ther generalization for any finite pattern in R

d is also
established. The separation condition is shown to be
necessary for such results to hold. In the end we show
that every sufficiently large point set in R

d contains an
arbitrarily large subset of almost collinear points. No
separation condition is needed in this case.

Keywords: Euclidean Ramsey theory, approximate
arithmetic progression, approximate homothetic copy,
almost collinear points.

1 Introduction

Let us start by recalling the classical result of Ramsey
from 1930:

Theorem 1 (Ramsey [23]). Let p ≤ q, and r be
positive integers. Then there exists a positive integer
N = N(p, q, r) with the following property: If X is a set
with N elements, for any r-coloring of the p-element
subsets of X, there exists a subset Y of X with at least
q elements such that all p-element subsets of Y have the
same color.

As noted in [4], perhaps the first Ramsey type result
of a geometric nature is Van der Waerden’s theorem on
arithmetic progressions:

Theorem 2 (Van der Waerden [26]). For every pos-
itive integers k and r, there exists a positive integer
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W = W (k, r) with the following property: For every r-
coloring of the integers 1, 2, . . . , W there is a monochro-
matic arithmetic progression of k terms.

As early as 1936, Erdős and Turán have suggested
that a stronger density statement must hold. Only in
1975, Szemerédi succeeded to confirm this belief with
his celebrated result:

Theorem 3 (Szemerédi [25]). For every positive inte-
ger k and every c > 0, there exists N = N(k, c) such
that every subset X of {1, 2, . . . , N} of size at least cN
contains an arithmetic progression with k terms.

This is a fundamental result with relations to many
areas in mathematics. Szemerédi’s proof is very compli-
cated and is regarded as a mathematical tour de force
in combinatorial reasoning [18, 22]. Another proof of
this result was obtained by means of ergodic theory by
Fürstenberg [8] in 1977.

A homothetic copy of {1, 2, . . . , k}d is also called a
k-grid in R

d. The following generalization of Van der
Waerden’s theorem to higher dimensions is given by the
Gallai–Witt theorem [18, 22]:

Theorem 4 (Gallai–Witt [22]). For every positive
integers d, k and r, there exists a positive inte-
ger N = N(d, k, r) with the following property:
For every r-coloring of the integer lattice points in
{1, 2, . . . , N}d, there exists a monochromatic homoth-
etic copy of {1, 2, . . . , k}d. More precisely, there exist
(a1, a2, . . . , ad) ∈ {1, 2, . . . , N}d, and a positive inte-
ger x such that all points of the form (a1 + i1x, a2 +
i2x, . . . , ad + idx), i1, i2, . . . , id ∈ {0, 1, . . . , k − 1} are
of the same color.

A higher dimensional generalization of Szemerédi’s
density theorem was obtained by Fürstenberg and
Katznelson [9]; see also [22].

Theorem 5 (Fürstenberg–Katznelson [9]). For every
positive integers d, k and every c > 0, there exists a
positive integer N = N(d, k, c) with the following prop-
erty: every subset X of {1, 2, . . . , N}d of size at least
cNd contains a homothetic copy of {1, 2, . . . , k}d.

The proof of Fürstenberg and Katznelson uses infini-
tary methods in ergodic theory. As noted in [22], no
combinatorial proof is known.
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In the first part of our paper (Section 2), we present
analogues of Theorems 2, 3, 4, and 5, for point sets in
the Euclidean space. Specifically, we obtain (restricted)
Ramsey theorems for separated point sets, for finding
approximate homothetic copies of an arithmetic pro-
gression on the line and respectively of a grid in R

d. The
latter result carries over for any finite pattern point set
and every dense and sufficiently large separated point
set in R

d. It is worth noting that the separation condi-
tion is necessary for such results to hold (Proposition 1
in Section 2). While for Theorems 2, 3, 4, and 5, the
separation condition comes for free for any set of inte-
gers, it has to be explicitly enforced for point sets.

The exact statements of our results (Theorems 6, 7
and 8) are to be found in Section 2 following the def-
initions. Fortunately, the proofs of these theorems are
much simpler than of their exact counterparts previ-
ously mentioned. Moreover, the resulting upper bounds
are much better than those one would get from the in-
teger theorems. The proofs are constructive and yield
very simple algorithms for computing the respective ap-
proximate homothetic copies given input point sets sat-
isfying the requirements.

In the second part (Section 3), we present an unre-
stricted theorem (Theorem 9) which shows the existence
of an arbitrary large subset of almost collinear points in
every sufficiently large point set in R

d. No separation
condition is needed in this result.1

Applications. Many other Ramsey type problems in
the Euclidean space have been investigated in a series
of papers by Erdős et al. [4, 5, 6] in the early 1970s,
and later by Graham [10, 11, 12, 13, 14]. Van der
Waerden’s theorem on arithmetic progressions has in-
spired new connections and numerous results in num-
ber theory, combinatorics, and combinatorial geome-
try [1, 2, 7, 10, 15, 16, 17, 18, 19, 20, 22, 24], where
we only named a few here.

Our analogues of Theorems 2, 3, 4, and 5, for point
sets in the Euclidean space may also find fruitful appli-
cations in combinatorial and computational geometry.
It is obvious that general point sets are much more
common in these areas than the rather special inte-
ger or lattice point sets that occur in number theory
and integer combinatorics. A first application needs
to be mentioned: A result similar to our Theorem 6
has been proved instrumental in settling a conjecture
of Mitchell [21] on illumination for maximal unit disk
packings: It is shown [2] that any dense (circular) for-
est with congruent unit trees that is deep enough has a
hidden point. The result that is needed there is an ap-
proximate equidistribution lemma for separated points
on the line, which is a relaxed version of our Theorem 6.

1Due to space limitations, proofs have been omitted from this

abstract.

2 Approximate homothetic copies of any pattern

Definitions. Let δ > 0. A point set S in R
d is said to

be δ-separated if the minimum pairwise distance among
points in S is at least δ. For two points p, q ∈ R

d,
let d(p, q) denote the Euclidean distance between them.
The closed ball of radius r in R

d centered at point z =
(z1, . . . , zd) is Bd(z, r) = {x ∈ R

d | d(z, x) ≤ r} =

{(x1, . . . , xd) |
∑d

i=1(xi − zi)
2 ≤ r2}.

Given a point set (or “pattern”) P = {p1, . . . , pk} of
k points in R

d and another point set Q with k points:
(i) Q is similar to P , if it is a magnified/shrunk and
possibly rotated copy of P . (ii) Q is homothetic to P , if
it is a magnified/shrunk copy of P in the same position
(with no rotations).

Approximate similar copies and approximate homo-
thetic copies are defined as follows. See also Fig. 1 for
an illustration. Given point sets P and Q as above and
0 < ε ≤ 1/3:

• Q is an ε-approximate similar copy of of P , if there
exists Q′ so that Q′ is similar to P , and each point
q′i ∈ Q′ contains a (distinct) point qi ∈ Q in the ball
of radius εd centered at q′i, where d is the minimum
pairwise distance among points in Q′.

• Q is an ε-approximate homothetic copy of of P , if
there exists Q′ so that Q′ is homothetic to P , and
each point q′i ∈ Q′ contains a (distinct) point qi ∈ Q
in the ball of radius εd centered at q′i, where d is the
minimum pairwise distance among points in Q′.

Figure 1: Left: a 4-term arithmetic progression (thick ver-
tical bars) and a 1/3-approximate 4-term arithmetic pro-
gression (filled circles) on the line. Right: a 3-grid (empty
circles) and a 1/4-approximate 3-grid (filled circles) in R

2.

The condition ε ≤ 1/3 is imposed to ensure that
any two balls of radius εd around points in Q′ are
disjoint, and moreover, that any two distinct points
of Q are separated by a constant times d, in this
case by at least d/3.2 In our theorems, ε-approximate
means ε-approximate homothetic copy. We start with
ε-approximate arithmetic progressions on the line by

2The choice of the constant 1/3 in this definition is rather

arbitrary. One could relax this inequality and require ε < 1/2

instead, however this would allow two points in Q be close to

each other, which may defeat the intent.
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proving the following analogue of Theorem 3 for points
on the line:

Theorem 6 For every positive integer k, c, δ > 0,
and 0 < ε ≤ 1/3, there exists a positive number
Z0 = Z0(k, c, δ, ε) with the following property: Let S
be a δ-separated point set in an interval I of length
|I| = L with at least cL points, where L ≥ Z0. Then S
contains a k-point subset that forms an ε-approximate
arithmetic progression of k terms. Moreover, one can
set Z0(k, c, δ, ε) = 2δ · (ks)j , where s =

⌈

1
ε

⌉

, r =
k

k−1 , j =
⌈

log 2
cδ

log r

⌉

.

The next proposition shows that the separation con-
dition in the theorem is necessary, for otherwise, even
a 3-term approximate arithmetic progression cannot be
guaranteed, irrespective of the size of the point set.

Proposition 1 For any n and 0 ≤ ε < 1/3, there ex-
ists a set of n points in [0, 1], without an ε-approximate
arithmetic progression of 3 terms.

Remark. The following slightly different form of
Proposition 1 may be convenient: For any n there ex-
ists a set of n points in [0, 1], without an ε-approximate
arithmetic progression of 3 terms, for any 0 ≤ ε ≤ 1/4.
For the proof, take S = {1/8i | i = 0, . . . , n − 1}, and
proceed in the same way.

For a d-dimensional cube Πd
i=1[ai, bi], let us refer to

(a1, . . . , ad) as the first vertex of the d-dimensional cube.
We now continue with ε-approximate grids in R

d by
proving the following analogue of Theorem 5 for points
in R

d:

Theorem 7 For every positive integers d, k, and c, δ >
0, and 0 < ε ≤ 1/3, there exists a positive number
Z0 = Z0(d, k, c, δ, ε) with the following property: Let
S be a δ-separated point set in the d-dimensional cube
Q = [0, L]d, with at least cLd points, where L ≥ Z0.
Then S contains a subset that forms an ε-approximate
k-grid in R

d. Moreover, one can set Z0(d, k, c, δ, ε) =

2δ ·(ks)j , where s =
⌈√

d
ε

⌉

, r = kd

kd−1 , j =
⌈

log
κd
cδ

log r

⌉

.

Here κd (in the expression of j) is a constant depend-

ing on d: κd =
⌈

3d·(d/2)!

πd/2

⌉

, if d is even, and κd =
⌈

3d·(1·3···d)
2·(2π)(d−1)/2

⌉

, if d is odd.

By selecting a sufficiently fine grid in Theorem 7, one
obtains by similar means the following general state-
ment for any pattern in R

d:

Theorem 8 For every positive integer d, finite pattern
P ⊂ R

d, |P | = k, and c, δ > 0, and 0 < ε ≤ 1/3, there
exists a positive number Z0 = Z0(d, P, c, δ, ε) with the
following property: Let S be a δ-separated point set in

the d-dimensional cube Q = [0, L]d, with at least cLd

points, where L ≥ Z0. Then S contains a subset that is
an ε-approximate homothetic copy of P .

The iterative procedures used in the proofs of Theo-
rems 6, 7 and 8, yield very simple algorithms for com-
puting the respective approximate homothetic copies
given input point sets satisfying the imposed require-
ments. Each iteration takes linear time (in the number
of points); see the full version for details. On the other
hand, these requirements are currently too high, and it
is likely that such copies exist under much weaker con-
ditions.

Remark. The following connection between Theorem 6
and Szemerédi’s Theorem 3 is worth making. If one
makes abstraction of the bounds obtained, the qualita-
tive statement in Theorem 6 can be obtained as a corol-
lary from Theorem 3; see the full version for details.
It is also worth noting that our proof of Theorem 6 is
self contained and much simpler (from first principles)
than the proof one gets from Szemerédi’s theorem as
described above. Moreover, the upper bound result-
ing from our proof is much better than that one gets
from the integer theorem. That is, with the quantitative
bounds included, the two theorems (6 and 7) cannot be
derived as corollaries of the classical integer theorems.
Indeed, as mentioned in the introduction no combinato-
rial proof is known for the higher dimensional general-
ization of Szemerédi’s theorem due to Fürstenberg and
Katznelson.

3 Almost collinear points

Let 0 < ε < 1, and let S be a finite point set in R
d. S is

said to be ε-collinear, if in every triangle determined by
S, two of its (interior) angles are at most ε. Note that
in particular, this condition implies that an ε-collinear
point set is contained in a section of a cylinder whose
axis is a diameter pair of the point set, and with radius
εD, where D is the diameter; the cylinder radius is at
most D

2 tan ε ≤ εD, for ε < 1.

Theorem 9 For any dimension d, positive integer k,
and ε > 0, there exists N = N(d, k, ε), such that any
point set S in R

d with at least N points has a subset of
k points that is ε-collinear.

Acknowledgments. The author thanks the anony-
mous reviewer of an earlier version for the observation
at the end of Section 2.
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[6] P. Erdős, R. Graham, P. Montgomery, B. Roth-
schild, J. Spencer, and E. Straus: Euclidean Ram-
sey theorems, III, in Infinite and Finite Sets, vol. I;
Colloq. Math. Soc. János Bolyai, vol. 10, North-
Holland, Amsterdam, 1975, pp. 559–583.
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