CCCG 2010, Winnipeg MB, August 9-11, 2010

Finding Minimal Bases in Arbitrary Spline Spaces

Ana Paula Resende Malheiro*

Abstract

In this work we describe a general algorithm to find a
finite-element basis with minimum total support for an
arbitrary spline space, given any basis for that same
space. The running time is exponential on n in the
worst case, but O(nm?) for many cases of practical in-
terest, where n is the number of mesh cells and m is the
dimension of the spline space.

1 Introduction

In general terms, a spline is a piecewise-defined func-
tion with pieces of a certain type, joined with certain
smoothness constraints. Among all spline families, the
polynomial ones are the most popular.

Many applications require splines with certain con-
straints, such as prescribed maximum degree or pre-
scribed order of continuity between the pieces. It is of-
ten useful to have a basis for the linear vector space of
all splines that satisfy such constraints. Besides provid-
ing a minimal representation for such splines, the basis
often gives valuable insight about the space.

It is relatively easy to compute some basis ¢ for a
spline space defined in this way. One needs only to set
up the linear system that defines the constraints, and
solve it by any standard method; the cost of this pro-
cedure is usually O(n?) where n is the size of the mesh.
However, the basis elements found by this method are
usually nonzero over a large part of the mesh. For ef-
ficiency reasons, it is usually desirable to minimize the
support of the basis elements. For example, when eval-
uating a spline f at a point z we need to compute
only the values of ¢;(x) for the elements ¢; such that
x is in the support of ¢;; when computing integrals like
[¢i(x) f(z)dz we only need to integrate over the sup-
port of ¢;. Thus, by reducing the size of the supports we
reduce the cost of those computations. For this reason,
splines whose support is a small subset of the domain,
called finite elements (FEs), have become an essential
tool in many scientific and engineering disciplines [1].

Finding a finite element basis for a given spline space
has been more of an art than a science. There are many
specialized constructions that give small (but not nec-
essarity minimal) bases for specific spline spaces, e.g.

*Institute of Computing, State University of Campinas,
{anapaula, stolfi}@ic.unicamp.br

Jorge Stolfi*

polynomial splines on triangulations of R%, R3 or S?
with maximum degree g and specified continuity r (C,.).
However, there are still may combinations of ¢ and r,
and many mesh geometries, for which the optimum ba-
sis (or even any finite element basis) is not known.
There are also many spaces that do not admit any finite-
element basis, i.e. for which any basis must include el-
ements whose support is a substantial function of the
mesh. However, such a space may still contain a sub-
space that has a finite element basis, and is large enough
for the application at hand. Finding such subspaces,
too, is more an art than a science.

For example, consider the space PY[C] of trivariate C,
polynomial splines of degree ¢ in a generic tetrahedral
partition C of R?. According to Lai and Schumaker [2]
the problem of finding a basis for PZ[C] (or just its di-
mension) seems to be quite difficult unless g is much
larger than r. Alfeld et al. [3] showed that P?[C] has a
local basis for g > 8r + 1, but they did not give an ex-
plicit construction. Alfeld et al. [4] gave a construction
for P$[C]. Schumaker and Sorokina [5] stated that they
did not know of any general construction for a finite el-
ement basis of P7[C], but gave an explicit formula for a
finite element basis of the subspace of P[C] consisting
of all splines which are Cy on the vertices of C.

For another example, consider a partition 7 of R3
into trihedra with a common vertex at the origin. Let
HI[T]/S? be the space of homogeneous trivariate poly-
nomial splines over 7 of degree g, defined on R3 but
restricted to the sphere S?, with continuity » on S2.
Alfed et al. [6] gave an explicit construction for the case
g = 3r + 2 and conjectured that finite element bases do
not exist when g < 3r + 1. Gomide and Stolfi [7, 8]
described another basis for the space H{[7]/S? (except
for meshes 7 with coplanar edges), some of whose ele-
ments have smaller support that those given by Alfed
et al..

These and many other examples motivated our search
for a general algorithm, even if relatively expensive, that
would determine a finite element basis with minimum
support for an arbitrary spline space S; or, if the space
S does not have such a basis, that would find a large
subspace of S that does. Here we describe such an al-
gorithm [11, 12].

2274 Canadian Conference on Computational Geometry, 2010

2 Notation and definitions

Meshes and parts. A mesh over R™ is a finite collection
of disjoint subsets of R™, the parts of the mesh; such that
every part is homeomorphic to a k-dimensional open
ball, and there exists an integer d such that every part
with dimension j < d is contained in the frontier of a d-
dimensional part. The integer d is called the dimension
of the mesh. A k-part is a part with dimension k. The
parts of maximum dimension d are called cells. The
union UC C R” of all parts is the domain of C. For lack
of space, we will henceforth ignore c-patches where c is
not a cell, even though those patches are relevant to the
definition of continuity.

Support. The support of a spline f on C, denoted
by supp(f), is the set of all cells of C where f is not
identically zero. Note that supp(f) is a set of cells,
not points. The size of the support is the number
supp(f) of cells in it.
Spline spaces. We will denote by (¢) the linear space
generated by a set ¢ of splines. For any subset K of Cq4,
we also denote by S[K] the subspace of a spline space S
consisting of the splines of S whose support is contained
in .
Polynomial splines. A polynomial spline on a mesh
C over R" is a function f defined on the mesh domain
UC, such that the restriction f|c of f to each part ¢ € C
(called the c-patch of the spline) coincides with some
polynomial on the n coordinates of the argument point.
We denote by P(C) the set of all polynomial splines
on the mesh C. Obviously P(C) is a linear vector space.
We also denote by PZ(C) the subspace of P(C) whose
patches have maximum total degree g and are continu-
ous to order ¢ over the entire domain UC.

Finite element bases. Let C be a mesh and
®0,--.,Pm—1 a basis for some space S of splines over
C. The sum Z;ZBI #supp(¢;) is the weight of the ba-
sis, denoted by wt(¢). Note that the expected cost of
evaluating a linear combination f(z) = Z?;OI a;di(x)
for a random point x is proportional to wt(¢).

A finite element basis is a basis of splines where
#supp(¢;) is “small” for all 4, compared with the total
number of mesh elements #C. The term is meaning-
ful only when applied to families of meshes and spline
spaces, and it usually means that # supp(¢;) is limited
by a constant that is independent of ¢ and #C.

In particular, a basis is piecewise if the support of
each element ¢; is a single cell of C. The space PI(C)
has a piecewise basis, however P¢(C) generaly does not
have a piecewise basis when ¢ > 0.

3 The basic algorithm

We describe here a generic algorithm to find a minimum-
weight basis for an arbitrary spline space S on a d-

dimensional mesh C. See Algorithm 1.

Algorithm 1

1: p—0; ¢« (); Set M? to a 0 x m matrix.
2. q «— m; 0 «— 1; Set M? to the m x m identity
matrix.

3: 5« 1.

4: while p < m and s <n do

5. for each K C Cy with #K = s do

6: while

7 there is an element & in (¢,) with
supp(§) = K that is not in (¢)

do
8: Append € to ¢; increment p and adjust M?.
9: Exclude some redundant ¢; from 6, decre-
ment ¢ and update M?.
10: end while

11: end for

122 s+« s+ 1.
13: end while

14: output ¢, M?.

Inputs. The input to Algorithm 1 is an arbitrary basis
Yo, . .., ¥m—1 for the space S, and a computable crite-
rion to determine whether a spline is identically zero in
a given cell ¢. Specifically, for each cell ¢ € C the client
must supply a full-rank matrix N¢ with r. rows and m
columns, such that, for all 2in 0...r, — 1,

> Niaj=0& (Vo) ajh(x)=0 (1)

For example, we can take NS = ;(z;) where
{20,271, .., 2r.—1} is an appropriate set of points of ¢. If
1 is a piecewise basis, then N€ is simply the subset of
the rows of the identity matrix that correspond to the
elements v; whose support is {c}.

Outputs. The output of the algorithm is another ba-
sis @g, - . ., dm—1 for S whose weight wt(¢) is minimum
among all bases of S. As a byproduct, the algorithm
also outputs an m x m basis change matriz M that re-
lates the two bases, that is ¢; = Z;-n:_ol M.

Invariants. Before each iteration of the inner loop of
our algorithm (steps 7-9), we have constructed a par-
tial finite element basis ¢ = (¢o, ¢1,...,¢p—1) and
a complementary basis § = (fp,...,03—1), such that
p+ q = m, as well as corresponding basis change ma-
trices, M? of size p x n and M? of size ¢ x n. These
invariants then hold:
PL: (6,60) = (1) = S.
P2: wt(¢) is minimum among all sets of p linearly in-
dependent splines of S.
P3: ¢ = Y7 Miaby forie0,...,p—1.

-1 3
P4: 0, =57, Mfkd)k forj€0,...,q— 1.

CCCG 2010, Winnipeg MB, August 9-11, 2010

At the beginning of each iteration, {fo,...,0,-1} is a
subset of the input basis {¢y,...,¥m—_1}, so the ¢ rows
of M? are a subset of the rows of I, xn.

Finding a new element. The test in step 7 for the ex-
istence of a new element £ can be performed as follows:
(i) determine the subspace S[K] of S = (¢,) that con-
sists of all splines f of S with supp(f) C K, and then
(ii) test whether S[K] contains any element not in (¢).
Since S has finite dimension, sub-problem (i) can be ex-
pressed by a system of linear equations. Solving this
system (e. g. by Gaussian elimination) yields a set of
r linearly independent splines of S whose support is
contained in /C.

If this set includes a spline £ = 7, uid; + 3, v;0;
with v; # 0 for some 7, then & is not in (¢). Moreover,
the support of £ cannot be strictly contained in K, oth-
erwise it would have been found in step 7 of a previous
iteration. Therefore supp(§) = K. Conversely, if all of
those splines have vg = v; = --- = v,—1 = 0, then there
is no & that satisfies the condition of step 7.

Finding a redundant element. In step 9 we can choose

any 6; such that the expansion of £ (above) has v; #

0. In this step we exclude row j from MY, and we

insert (wg,wi, ..., Wn_1) as row p of M?, where wy, =
-1 ¢ -1

dorso w4 Z?:o UjMfk-

3.1 Correctness

To prove that Algorithm 1 is correct, we need to show
that each iteration of steps 7—9 preserves the invariants
(P1-P4). Note that this is a “greedy” algorithm [9],
that, at each iteration of steps 7-9, adds to the basis
¢ a spline of § with smallest support that is not yet in
(¢). The question is whether greedily adding the small-
est possible element & at one iteration could somehow
prevent us from finding a minimal basis at the end.

Our problem can be represented by a matroid
(H,E, K) as defined by Edmonds [10]. The correspon-
dence between Edmonds’s notation and ours is as fol-
lows: (1) Edmonds’s set H of elements of the matroid
is our set of all splines of S; (2) an element j of the
index set E for Edmonds is for us a coefficient vector a
of a spline £ in terms of the original basis ¢). Therefore,
Edmonds’s set E is our R™; (3) Edmonds’s weight (or
E-weight for short) ¢; of that index element is in our
algorithm the negative integer —(# supp(>_ a;1);)); and
(4) Edmonds’s family K of maximal of independent sets
is, in our algorithm, the set of all bases of S.

With these correspondences, our algorithm becomes
equivalent to Edmonds’s generic greedy algorithm [10,
paragraph (7)]. In our case, the E-weight is a neg-
ative integer, and the external loop of our algorithm
(step 4) considers every possible E-weight —s in decreas-
ing order, and only moves to the next lower E-weight
—(s+1) when there are no more basis elements with E-

weight equal to —s. The “elements already chosen” of
Edmonds are the splines ¢y, ..., ¢,—1 (more precisely,
the coefficients vectors of those splines in terms of the
basis). For each s, steps 5 and 7 look for the coef-
ficients ag, ..., am—1 of a spline £ of S (i.e. a member
j of Edmonds’s set E) that is linearly independent of
the splines ¢, ..., ¢p—1. Therefore, Algorithm 1 is an
instance of Edmonds’s, and his proof of correctness [10,
paragraphs 18-28] holds for our algorithm too. O

3.2 Efficiency

Algorithm 1 has exponential running time since steps 6—
9 are executed 2™ times in the worst case, but it can be
improved in many ways. As we shall see, for most cases
of interest its running time can be reduced to polyno-
mial — and eventually linear — in the size of the mesh.
Note however that the algorithm stops as soon as p =
m, since step 7 will then certainly fail for all K. Thus,
if S has a basis whose maximum support size is ¢, the
algorithm performs only (j) +---+ (%) + ¢ iterations of
steps 7-9, which is O(n'). Since the cost of one iteration
of steps 7-9 is O(m?), the total time will be O(n‘m?).

3.3 Exploiting connectedness

We can improve the efficiency even further by observing
that some sets K cannot possibly provide a new element
£. A subset I C Cy is connected with respect to a spline
space S if for every non-trivial partition Ky, Ko of K we
have S[K] # S[K1] @ S[Kz].

Theorem 1 In a basis ¢ of minimum weight for a
spline space over a mesh C, the support of each element
@i is a connected set of cells of Cq.

For the proof of this theorem and the details on how
to test a set K for connectedness in this sense, see the
full version of this paper [12].

With theorem 1, we can speed up Algorithm 1 by
considering only subsets I C Cj that are connected in
the graph G. Namely we replace step 5 of the algorithm
by: “for each K C C; with #K = s such that G[K] is
connected do”.

For many meshes of practical interest, there is a rel-
atively small bound ~ on the number of neighbors of
each cell, independent of the total number n of cells.
Moreover the constraints are usually continuity require-
ments that relate coefficients a;/, a;j» which are in adja-
cent cells. Therefore the maximum vertex degree of the
graph G is h, and the number of connected subgraphs
of G with s nodes is O(h®n). It follows that the cost of
each iteration of steps 7-9 is O(h®n). So, the total time
will be O(h*nm?), where s is the maximum support size
of any element in the minimum weight basis. Alterna-
tively, the algorithm can be stopped after s reaches a

2274 Canadian Conference on Computational Geometry, 2010

preset maximum support size, in which case it will re-
turn a basis of minimum weight in the largest subspace
of S which has a basis whose element supports do not
exceed s.

4 Example

Below we show the basis found with algo- [
rithm 1 for the space S = PZ[C] on the 10-
cell mesh C, shown at left. For the initial |
basis 1, we used a set of linearly independent splines in
P2[C], derived from a piecewise basis of P?[C] by solving
the C5 continuity constraints. The space has dimension
11. Two of these input splines are shown in figure 1.
Figure 2 shows four elements of the basis ¢ found by
Algorithm 1. Note that the support of ¢1; is the whole
mesh. This is unavoidable since the space PZ[C] does
not admit a finite-element basis.

OO0 =
LohShon

Y3 (wt = 10) Y10 (wt = 10)

Figure 1: Two elements of the input basis ¢ for the
space PZ[C].

P6 (Wt =15)

11 (wt = 10)

Figure 2: Some elements of a minimum-weight basis ¢
for the space PZ[C].

The C program and data files for these tests are
available at http://www.ic.unicamp.br/~anapaula/
minimalbases.tar.gz.

5 Conclusions

We have described an algorithm that finds a finite ele-
ment basis with minimal weight in an arbitrary spline
space. Alternatively, the algorithm can be used to find

a maximal subspace of a given space S that admits a
basis whose elements have a prescribed maximum sup-
port size t. In either case, the cost grows exponentially
on s, but nevertheless the algorithm is viable for many
meshes and spaces of practical importance.

Acknowledgment

The authors acknowledge support of FAPESP (grant
2007/52015-0) and CNPq (grants 143088/05-0,
306631/07-5, 551233 /09-5).

References

[1] R. H. Gallagher, Finite Element Analysis: Fundamen-
tals. Prentice-Hall, 1975.

[2] M.-J. Lai and L. L. Schumaker, “Trivariate C" poly-
nomial macroelements,” Constructive Approximation,
vol. 26, no. 1, pp. 11-28, 2007.

[3] P. Alfeld, L. L. Schumaker, and M. Sirvent, “On dimen-
sion and existence of local bases for multivariate spline
spaces,” J. Approx. Theory, vol. 70, pp. 243-264, 1992.

[4] P. Alfeld, L. L. Schumaker, and W. Whiteley, “The
generic dimension of the space of C" splines of degree
d > 8 on tetrahedral decompositions,” SIAM J. Numer.
Anal., vol. 30, no. 3, pp. 889-920, 1993.

[5] L. L. Schumaker and T. Sorokina, “C' quintic splines
on type-4 tetrahedral partitions.” Adv. Comput. Math.,
vol. 21, no. 3-4, pp. 421444, 2004.

[6] P. Alfed, M. Neamtu, and L. L. Schumaker, “Dimen-
sion and local bases of homogeneous spline spaces,”
SIAM Journal of Mathematical Analysis, vol. 27, no. 5,
pp- 1482-1501, September 1996.

[7] A. Gomide and J. Stolfi, “Bases for Non-Homogeneous
Polynomial Cy, Splines on the Sphere,” Proc. LATIN’98
- Latin American Theoretical Informatics Conference,
pp. 133-140, 1998.

[8] A.Gomide, “Splines polinomiais ndo homogéneos na es-
fera,” Ph.D. dissertation, Institute of Computing, Uni-
versity of Campinas, May 1999.

[9] Herbert S. Wilf, Algorithms and Complezity. Prentice-
Hall, 1986.

[10] J. Edmonds, “Matroids and the greedy algorithm,”
Mathematical Programming, vol. 1, pp. 127-136, 1971.

[11] Ana Paula Resende Malheiro and Jorge Stolfi. “Find-
ing minimal bases in arbitrary spline spaces.” Technical
Report 1C-09-21, Institute of Computing, University of
Campinas, June 2009.

[12] Ana Paula Resende Malheiro and Jorge Stolfi. “Finding
minimal bases in arbitrary spline spaces (full paper),”
Proc. 2010 Canadian Conference on Computational Ge-
ometry (CD-ROM).

