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Finding Minimal Bases in Arbitrary Spline Spaces

Ana Paula Resende Malheiro*

Abstract

In this work we describe a general algorithm to find a
finite-element basis with minimum total support for an
arbitrary spline space, given any basis for that same
space. The running time is exponential on n in the
worst case, but O(nm?) for many cases of practical in-
terest, where n is the number of mesh cells and m is the
dimension of the spline space.

1 Introduction

In general terms, a spline is a piecewise-defined func-
tion with pieces of a certain type, joined with certain
smoothness constraints. Among all spline families, the
polynomial ones are the most popular.

Many applications require splines with certain con-
straints, such as prescribed maximum degree or pre-
scribed order of continuity between the pieces. It is of-
ten useful to have a basis for the linear vector space of
all splines that satisfy such constraints. Besides provid-
ing a minimal representation for such splines, the basis
often gives valuable insight about the space.

It is relatively easy to compute some basis ¢ for a
spline space defined in this way. One needs only to set
up the linear system that defines the constraints, and
solve it by any standard method; the cost of this pro-
cedure is usually O(n?) where n is the size of the mesh.
However, the basis elements found by this method are
usually nonzero over a large part of the mesh. For ef-
ficiency reasons, it is usually desirable to minimize the
support of the basis elements. For example, when eval-
uating a spline f at a point z we need to compute
only the values of ¢;(x) for the elements ¢; such that
x is in the support of ¢;; when computing integrals like
[ ¢i(x) f(z)dz we only need to integrate over the sup-
port of ¢;. Thus, by reducing the size of the supports we
reduce the cost of those computations. For this reason,
splines whose support is a small subset of the domain,
called finite elements (FEs), have become an essential
tool in many scientific and engineering disciplines [1].

Finding a finite element basis for a given spline space
has been more of an art than a science. There are many
specialized constructions that give small (but not nec-
essarity minimal) bases for specific spline spaces, e.g.
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polynomial splines on triangulations of R%, R3 or S?
with maximum degree g and specified continuity r (C,.).
However, there are still may combinations of ¢ and r,
and many mesh geometries, for which the optimum ba-
sis (or even any finite element basis) is not known.
There are also many spaces that do not admit any finite-
element basis, i.e. for which any basis must include el-
ements whose support is a substantial function of the
mesh. However, such a space may still contain a sub-
space that has a finite element basis, and is large enough
for the application at hand. Finding such subspaces,
too, is more an art than a science.

For example, consider the space PY[C] of trivariate C,
polynomial splines of degree ¢ in a generic tetrahedral
partition C of R?. According to Lai and Schumaker [2]
the problem of finding a basis for PZ[C] (or just its di-
mension) seems to be quite difficult unless g is much
larger than r. Alfeld et al. [3] showed that P?[C] has a
local basis for g > 8r + 1, but they did not give an ex-
plicit construction. Alfeld et al. [4] gave a construction
for P$[C]. Schumaker and Sorokina [5] stated that they
did not know of any general construction for a finite el-
ement basis of P7[C], but gave an explicit formula for a
finite element basis of the subspace of P[C] consisting
of all splines which are Cy on the vertices of C.

For another example, consider a partition 7 of R3
into trihedra with a common vertex at the origin. Let
HI[T]/S? be the space of homogeneous trivariate poly-
nomial splines over 7 of degree g, defined on R3 but
restricted to the sphere S?, with continuity » on S2.
Alfed et al. [6] gave an explicit construction for the case
g = 3r + 2 and conjectured that finite element bases do
not exist when g < 3r + 1. Gomide and Stolfi [7, 8]
described another basis for the space H{[7]/S? (except
for meshes 7 with coplanar edges), some of whose ele-
ments have smaller support that those given by Alfed
et al..

These and many other examples motivated our search
for a general algorithm, even if relatively expensive, that
would determine a finite element basis with minimum
support for an arbitrary spline space S; or, if the space
S does not have such a basis, that would find a large
subspace of S that does. Here we describe such an al-
gorithm [11, 12].
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2 Notation and definitions

Meshes and parts. A mesh over R™ is a finite collection
of disjoint subsets of R™, the parts of the mesh; such that
every part is homeomorphic to a k-dimensional open
ball, and there exists an integer d such that every part
with dimension j < d is contained in the frontier of a d-
dimensional part. The integer d is called the dimension
of the mesh. A k-part is a part with dimension k. The
parts of maximum dimension d are called cells. The
union UC C R” of all parts is the domain of C. For lack
of space, we will henceforth ignore c-patches where c is
not a cell, even though those patches are relevant to the
definition of continuity.

Support. The support of a spline f on C, denoted
by supp(f), is the set of all cells of C where f is not
identically zero. Note that supp(f) is a set of cells,
not points.  The size of the support is the number
# supp(f) of cells in it.
Spline spaces. We will denote by (¢) the linear space
generated by a set ¢ of splines. For any subset K of Cq4,
we also denote by S[K] the subspace of a spline space S
consisting of the splines of S whose support is contained
in .
Polynomial splines. A polynomial spline on a mesh
C over R" is a function f defined on the mesh domain
UC, such that the restriction f|c of f to each part ¢ € C
(called the c-patch of the spline) coincides with some
polynomial on the n coordinates of the argument point.
We denote by P(C) the set of all polynomial splines
on the mesh C. Obviously P(C) is a linear vector space.
We also denote by PZ(C) the subspace of P(C) whose
patches have maximum total degree g and are continu-
ous to order ¢ over the entire domain UC.

Finite element bases. Let C be a mesh and
®0,--.,Pm—1 a basis for some space S of splines over
C. The sum Z;ZBI #supp(¢;) is the weight of the ba-
sis, denoted by wt(¢). Note that the expected cost of
evaluating a linear combination f(z) = Z?;OI a;di(x)
for a random point x is proportional to wt(¢).

A finite element basis is a basis of splines where
#supp(¢;) is “small” for all 4, compared with the total
number of mesh elements #C. The term is meaning-
ful only when applied to families of meshes and spline
spaces, and it usually means that # supp(¢;) is limited
by a constant that is independent of ¢ and #C.

In particular, a basis is piecewise if the support of
each element ¢; is a single cell of C. The space PI(C)
has a piecewise basis, however P¢(C) generaly does not
have a piecewise basis when ¢ > 0.

3 The basic algorithm

We describe here a generic algorithm to find a minimum-
weight basis for an arbitrary spline space S on a d-

dimensional mesh C. See Algorithm 1.

Algorithm 1

1: p—0; ¢« (); Set M? to a 0 x m matrix.
2. q «— m; 0 «— 1; Set M? to the m x m identity
matrix.

3: 5« 1.

4: while p < m and s <n do

5. for each K C Cy with #K = s do

6: while

7 there is an element & in (¢, ) with
supp(§) = K that is not in (¢)

do
8: Append € to ¢; increment p and adjust M?.
9: Exclude some redundant ¢; from 6, decre-
ment ¢ and update M?.
10: end while

11:  end for

122 s+« s+ 1.
13: end while

14: output ¢, M?.

Inputs. The input to Algorithm 1 is an arbitrary basis
Yo, . .., ¥m—1 for the space S, and a computable crite-
rion to determine whether a spline is identically zero in
a given cell ¢. Specifically, for each cell ¢ € C the client
must supply a full-rank matrix N¢ with r. rows and m
columns, such that, for all 2in 0...r, — 1,

> Niaj=0& (Vo) ajh(x)=0 (1)

For example, we can take NS = ;(z;) where
{20,271, .., 2r.—1} is an appropriate set of points of ¢. If
1 is a piecewise basis, then N€ is simply the subset of
the rows of the identity matrix that correspond to the
elements v; whose support is {c}.

Outputs. The output of the algorithm is another ba-
sis @g, - . ., dm—1 for S whose weight wt(¢) is minimum
among all bases of S. As a byproduct, the algorithm
also outputs an m x m basis change matriz M that re-
lates the two bases, that is ¢; = Z;-n:_ol M.

Invariants. Before each iteration of the inner loop of
our algorithm (steps 7-9), we have constructed a par-
tial finite element basis ¢ = (¢o, ¢1,...,¢p—1) and
a complementary basis § = (fp,...,03—1), such that
p+ q = m, as well as corresponding basis change ma-
trices, M? of size p x n and M? of size ¢ x n. These
invariants then hold:
PL: (6,60) = (1) = S.
P2: wt(¢) is minimum among all sets of p linearly in-
dependent splines of S.
P3: ¢ = Y7 Miaby forie0,...,p—1.

-1 3
P4: 0, =57, Mfkd)k forj€0,...,q— 1.
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At the beginning of each iteration, {fo,...,0,-1} is a
subset of the input basis {¢y,...,¥m—_1}, so the ¢ rows
of M? are a subset of the rows of I, xn.

Finding a new element. The test in step 7 for the ex-
istence of a new element £ can be performed as follows:
(i) determine the subspace S[K] of S = (¢, ) that con-
sists of all splines f of S with supp(f) C K, and then
(ii) test whether S[K] contains any element not in (¢).
Since S has finite dimension, sub-problem (i) can be ex-
pressed by a system of linear equations. Solving this
system (e. g. by Gaussian elimination) yields a set of
r linearly independent splines of S whose support is
contained in /C.

If this set includes a spline £ = 7, uid; + 3, v;0;
with v; # 0 for some 7, then & is not in (¢). Moreover,
the support of £ cannot be strictly contained in K, oth-
erwise it would have been found in step 7 of a previous
iteration. Therefore supp(§) = K. Conversely, if all of
those splines have vg = v; = --- = v,—1 = 0, then there
is no & that satisfies the condition of step 7.

Finding a redundant element. In step 9 we can choose

any 6; such that the expansion of £ (above) has v; #

0. In this step we exclude row j from MY, and we

insert (wg,wi, ..., Wn_1) as row p of M?, where wy, =
-1 ¢ -1

dorso w4 Z?:o UjMfk-

3.1 Correctness

To prove that Algorithm 1 is correct, we need to show
that each iteration of steps 7—9 preserves the invariants
(P1-P4). Note that this is a “greedy” algorithm [9],
that, at each iteration of steps 7-9, adds to the basis
¢ a spline of § with smallest support that is not yet in
(¢). The question is whether greedily adding the small-
est possible element & at one iteration could somehow
prevent us from finding a minimal basis at the end.

Our problem can be represented by a matroid
(H,E, K) as defined by Edmonds [10]. The correspon-
dence between Edmonds’s notation and ours is as fol-
lows: (1) Edmonds’s set H of elements of the matroid
is our set of all splines of S; (2) an element j of the
index set E for Edmonds is for us a coefficient vector a
of a spline £ in terms of the original basis ¢). Therefore,
Edmonds’s set E is our R™; (3) Edmonds’s weight (or
E-weight for short) ¢; of that index element is in our
algorithm the negative integer —(# supp(>_ a;1);)); and
(4) Edmonds’s family K of maximal of independent sets
is, in our algorithm, the set of all bases of S.

With these correspondences, our algorithm becomes
equivalent to Edmonds’s generic greedy algorithm [10,
paragraph (7)]. In our case, the E-weight is a neg-
ative integer, and the external loop of our algorithm
(step 4) considers every possible E-weight —s in decreas-
ing order, and only moves to the next lower E-weight
—(s+1) when there are no more basis elements with E-

weight equal to —s. The “elements already chosen” of
Edmonds are the splines ¢y, ..., ¢,—1 (more precisely,
the coefficients vectors of those splines in terms of the
basis ). For each s, steps 5 and 7 look for the coef-
ficients ag, ..., am—1 of a spline £ of S (i.e. a member
j of Edmonds’s set E) that is linearly independent of
the splines ¢, ..., ¢p—1. Therefore, Algorithm 1 is an
instance of Edmonds’s, and his proof of correctness [10,
paragraphs 18-28] holds for our algorithm too. O

3.2 Efficiency

Algorithm 1 has exponential running time since steps 6—
9 are executed 2™ times in the worst case, but it can be
improved in many ways. As we shall see, for most cases
of interest its running time can be reduced to polyno-
mial — and eventually linear — in the size of the mesh.
Note however that the algorithm stops as soon as p =
m, since step 7 will then certainly fail for all K. Thus,
if S has a basis whose maximum support size is ¢, the
algorithm performs only (j) +---+ (%) + ¢ iterations of
steps 7-9, which is O(n'). Since the cost of one iteration
of steps 7-9 is O(m?), the total time will be O(n‘m?).

3.3 Exploiting connectedness

We can improve the efficiency even further by observing
that some sets K cannot possibly provide a new element
£. A subset I C Cy is connected with respect to a spline
space S if for every non-trivial partition Ky, Ko of K we
have S[K] # S[K1] @ S[Kz].

Theorem 1 In a basis ¢ of minimum weight for a
spline space over a mesh C, the support of each element
@i is a connected set of cells of Cq.

For the proof of this theorem and the details on how
to test a set K for connectedness in this sense, see the
full version of this paper [12].

With theorem 1, we can speed up Algorithm 1 by
considering only subsets I C Cj that are connected in
the graph G. Namely we replace step 5 of the algorithm
by: “for each K C C; with #K = s such that G[K] is
connected do”.

For many meshes of practical interest, there is a rel-
atively small bound ~ on the number of neighbors of
each cell, independent of the total number n of cells.
Moreover the constraints are usually continuity require-
ments that relate coefficients a;/, a;j» which are in adja-
cent cells. Therefore the maximum vertex degree of the
graph G is h, and the number of connected subgraphs
of G with s nodes is O(h®n). It follows that the cost of
each iteration of steps 7-9 is O(h®n). So, the total time
will be O(h*nm?), where s is the maximum support size
of any element in the minimum weight basis. Alterna-
tively, the algorithm can be stopped after s reaches a
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preset maximum support size, in which case it will re-
turn a basis of minimum weight in the largest subspace
of S which has a basis whose element supports do not
exceed s.

4 Example

Below we show the basis found with algo- [
rithm 1 for the space S = PZ[C] on the 10-
cell mesh C, shown at left. For the initial |
basis 1, we used a set of linearly independent splines in
P2[C], derived from a piecewise basis of P?[C] by solving
the C5 continuity constraints. The space has dimension
11. Two of these input splines are shown in figure 1.
Figure 2 shows four elements of the basis ¢ found by
Algorithm 1. Note that the support of ¢1; is the whole
mesh. This is unavoidable since the space PZ[C] does
not admit a finite-element basis.

OO0 =
LohShon

Y3 (wt = 10) Y10 (wt = 10)

Figure 1: Two elements of the input basis ¢ for the
space PZ[C].

P6 (Wt =15)

11 (wt = 10)

Figure 2: Some elements of a minimum-weight basis ¢
for the space PZ[C].

The C program and data files for these tests are
available at http://www.ic.unicamp.br/~anapaula/
minimalbases.tar.gz.

5 Conclusions

We have described an algorithm that finds a finite ele-
ment basis with minimal weight in an arbitrary spline
space. Alternatively, the algorithm can be used to find

a maximal subspace of a given space S that admits a
basis whose elements have a prescribed maximum sup-
port size t. In either case, the cost grows exponentially
on s, but nevertheless the algorithm is viable for many
meshes and spaces of practical importance.
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