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Small Strong Epsilon Nets
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Abstract

In this paper, we initiate the study of small strong ϵ-
nets and prove bounds for axis-parallel rectangles, half
spaces, strips and wedges. We also give some improved
bounds for small weak ϵ-nets.

1 Introduction

Let P be a set of n points in the plane. N ⊂ R2 is a weak
ϵ-net for a family of geometric objects S if S ∩ N ̸= ∅
for any S ∈ S such that |S ∩ P | > ϵn. Moreover, N is
a strong ϵ-net if N ⊂ P . The concept of ϵ-nets was in-
troduced by Haussler and Welzl [4] and has found many
applications in computational geometry, approximation
algorithms, learning theory etc.

It has been proved that for a range space (P,S)
with finite VC Dimension d, there exist ϵ-nets of size
O(dϵ log

1
ϵ ) [4]. Also, ϵ-nets of size O( 1ϵ ) exist for half

spaces in R2, R3 and pseudodisks in the plane [5, 6, 7].
Recently, it is shown that ϵ-nets of size O( 1ϵ log log

1
ϵ )

exist for axis-parallel rectangles in the plane [2].

Small weak ϵ-nets have been studied for convex ob-
jects, axis-parallel rectangles, disks and half spaces
in [1, 3, 8]. In this problem, the size of a weak ϵ-net is
fixed as i and the value of ϵi is bounded. Small nets are
especially interesting for the range spaces where tight
bounds for epsilon nets are not known. Also, small ep-
silon nets can be seen as a generalization of center points
for different range spaces.

In this paper, we initiate the study of small strong ϵ-
nets. Let ϵSi ∈ [0, 1] represents the smallest real number
such that, for any set of points P in the plane, there
exists a set Q ⊂ P of size i which is an ϵSi -net for P
with respect to S. We obtain bounds on ϵSi where S is
the family of axis-parallel rectangles, half spaces, strips
or wedges. We also improve some of the small weak
ϵ-net bounds given in [1].
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Rectangles Halfspaces Strips Wedges
LB UB LB UB LB LB

ϵ1 3/4 1 1 1
ϵ2 1/2 2/3 5/9 2/3 2/3 1
ϵ3 3/8 9/16 1/2 1/2 2/3
ϵ4 2/7 1/2 1/3 1/2 2/5 1/2

Table 1: Summary of lower and upper bounds for ϵSi .

2 General lower bounds for Axis-parallel rectangles
and Half spaces

Let S represents the family of axis-parallel rectangles/
half spaces.

Theorem 1 ϵSi ≥ 1
i , for i ≥ 2

Proof. Let P be a set of n points arranged uniformly
along the boundary of a circle with center c. Let N =
{p1, ....., pi} ⊂ P be an ϵSi -net. Connect c with pj for
1 ≤ j ≤ i. These lines divide the circle into i sectors and
at least one of these sectors contains n−i

i points from
P . We can have a range S ∈ S such that S contains all
points from this sector and does not include any point
from N . Therefore, for large values of n, ϵSi ≥ 1

i . �

In Section 3, we give improved (better than 1
i ) lower

bounds for axis-parallel rectangles for i ≤ 4. For i ≥ 5,
the above bounds improve upon the previously known
bounds of 1

i+1 . Section 4 gives better bounds for half
spaces.
The above general bound also applies to weak ϵ-nets

for the family of axis-parallel rectangles, half spaces and
convex sets. The proof for this is similar to Theorem 1.

3 Axis-parallel Rectangles

In this section, we show bounds on ϵRi for axis-parallel
rectangles. The summary of the bounds are given in
Table 1.
Let P be a set of n points in R2. Assume that all

points in P have distinct x and y co-ordinates.

Lemma 2 ϵR1 = 3
4

Proof : Let V1 and V2 be vertical lines that divide P
such that V1 has n

4 − 1 points of P to the left of it and
V2 has n

4 −1 points of P to the right of it. Similarly, let
H1 and H2 be horizontal lines that divide P such that
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Figure 1: Upper and lower bound for ϵR1

H1 has n
4 − 1 points of P above it and H2 has n

4 − 1
points of P below it(See figure 1(a)). Now, the second
column contains n

2 + 2 points. Since regions B and H
contain at most n

4 − 1 points each, the region E is not
empty.
Let x be any point in region E. Any axis-parallel rect-

angle that does not contain x avoids at least one row or
column thereby missing out at least n

4 points. Thus {x}
is a 3

4 -net.
To show the lower bound, consider the point set

shown in figure 1(b). The n points are arranged as four
subsets of equal size. For any point x ∈ P , there exists
an axis-parallel rectangle that does not contain x but
includes 3n

4 points from the other three subsets.

Lemma 3 1
2 ≤ ϵR2 ≤ 2

3

Proof : Let H1 and H2 be two horizontal lines that
partition P such that each of the three regions contain
n
3 points. Let V1 be a vertical line bisecting P . Let a
and b be input points in the second row with the least
perpendicular distance from V1 on either side of V1(See
figure 2(a)). We claim that {a, b} is a 2

3 -net.
Let R be an axis-parallel rectangle that contains more

than 2n
3 points from P . R should take points from

all the three horizontal regions and also should contain
points from both sides of V1. Let Va and Vb be vertical
lines passing through the points a and b respectively.
Assume R does not contain any of the points in {a, b}.
Therefore R should be restricted to the region between
Va and Vb and cannot include points from the second
row . Hence, a contradiction.
To prove the lower bound, consider the point set

shown in figure 2(b). The point set contains four sub-
sets of equal size. For any two points selected from P ,
there exists an axis-parallel rectangle that contains n

2
points and neither of the selected points.

Lemma 4 3
8 ≤ ϵR3 ≤ 9

16

Proof : Let R be an axis-parallel bounding rectangle
containing P . Let {p} be ϵR1 -net for P , constructed as
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Figure 2: Upper and lower bounds for ϵR2

described in Lemma 2. The vertical line passing through
p divides R into two regions of which, at most one, say
R1, can contain more than n

2 points from P . Similarly,
the horizontal line through p divides R into two regions
of which, at most one, say R2, can have more than n

2
points from P . Let Q = R1 ∩ P and S = R2 ∩ P . Also,
Q and S can have at most 3n

4 points as {p} is a 3
4 -net.

Let {q} and {s} be ϵR1 -net for Q and S respectively.
Let R be an axis-parallel rectangle that does not con-

tain the points p, q, s. Since it does not contain p, R can
take points from only one of the regions R \R1, R \R2,
R1 or R2. In the first two cases, it can contain at most
n
2 points from P . So assume without loss of general-
ity that it takes points only from the region R1. Now,
since R does not contain the point q, it can contain at
most 3

4 |Q| points from P i.e. R can contain at most
3
4 .

3n
4 = 9n

16 points from P . Therefore {p, q, s} is a 9
16 -

net.
To prove the lower bound, consider the point set as

shown in figure 3. The point set consists of n points
arranged into eight subsets of equal size. We claim that
whichever three points we choose from P , there exists
an axis-parallel rectangle that avoids these three points
and contains three out of the eight subsets. Index these
subsets as 1, 2, 3...8 starting from any subset and moving
in the clockwise direction. Consider the axis-parallel
rectangles that contain three consecutive subsets. There
are eight such rectangles and any point from P can cover
only three of them. Hence, three points are needed to
cover all the eight rectangles. Figure 3 shows the two
ways of picking these three points. In both the cases,
there exists an axis-parallel rectangle with at least 3n

8
points and not containing any of them.

Lemma 5 2
7 ≤ ϵR4 ≤ 1

2

Proof : Let V1 and H1 be lines that bisect P verti-
cally and horizontally respectively and p be the point
of intersection. Now bisect the two horizontal slabs so
that we get a grid with all the rows containing n

4 points
each(See figure 4(a)). Let a and b be input points in the
second row with the least perpendicular distance from
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Figure 3: Lower bound for ϵR3

V1 on either side of V1. Similarly, let c and d be in-
put points in the third row with the least perpendicular
distance from V1 on either side of V1. We claim that
{a, b, c, d} is a 1

2 -net.
Let R be an axis-parallel rectangle which contains

more than n
2 points from P . Clearly, R contains the

point p and includes points from at least three rows. As-
sume R does not contain any of the points in {a, b, c, d}.
Let Va, Vb, Vc, Vd be vertical lines passing through the
points a, b, c, d respectively. If R includes any point from
the first row, then it should be restricted to the region
between Va and Vb and cannot include points from the
second row. Similarly if R includes any point from the
fourth row, it cannot take points from the third row.
Therefore, R can include points from at most two rows,
which is a contradiction. Hence, ϵR4 ≤ 1

2 .
To prove the lower bound, consider the point set as

shown in Figure 4(b), where n points are arranged into
seven subsets of equal size inside a grid having three
rows and five columns. Let Rij be the subset in the
intersection of ith row and jth column where 1 ≤ i ≤ 3
and 1 ≤ j ≤ 5. A point has to be chosen from R23 as
part of the ϵR4 -net since R23 forms an axis-parallel rect-
angle of size 2n

7 with all other Rijs. Also, at least two
points are needed to cover the four axis-parallel rect-
angles of size 2n

7 formed by subsets R12, R14, R32 and
R34. Assume these two points are chosen from R12 and
R34. Now there are two disjoint axis-parallel rectangles
containing R32, R21 and R14, R25. These two rectangles
cannot be covered by a single point. Hence, ϵR4 ≥ 2

7 .

4 Half spaces

For odd values of i, ϵHi = 2
i+1 . The lower bound follows

from a construction given in [5]. The upper bound fol-
lows from a construction given in [6] which reduces the
problem of finding an ϵ-net for half spaces in R3 to the
problem of finding such an ϵ-net for points in convex
position, by projecting the points on to the convex hull.
We can apply the same technique in R2. For even values

p
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Figure 4: Upper and Lower bounds for ϵR4

of i the best known bounds are 2
i+2 ≤ ϵHi ≤ 2

i , which

follows from the bounds of ϵHi+1 and ϵHi−1.

Lemma 6 5
9 ≤ ϵH2 ≤ 2

3

d2

(a) (b)

d1

Figure 5: Lower bound for ϵH2

Proof : The upper bound follows from [5]. To show
the lower bound, consider the point set as shown in
Figure 5(a). The points are arranged as three subsets
of equal size near the corners of a triangle along the
bold lines. Let a and b be the two points selected. If
a and b belong to same subset, then there exists a half
space containing all the points from other two subsets
i.e, it contains 2n

3 points. If not, let a and b be the d1th
and d2th point respectively in their subsets. In this
case, there exists a half space that excludes a and b and
contains f(d1, d2) points, where f(d1, d2) = max(d1 +
d2, n − (d1 + d2),

n
3 + d1,

n
3 + d2). For any d1, d2 such

that 1 ≤ d1, d2 ≤ n
3 , f(d1, d2) is at least

5n
9 .

5 Intersection of two half spaces

In this section we consider small strong nets for ranges
defined by intersection of two half spaces. There are
two possibilities. First is the family of strips which are
formed by two intersecting half spaces with parallel sup-
porting lines. Second is the family of wedges which are
formed by two intersecting half spaces with non-parallel
supporting lines.

Lemma 7 For the family of strips, ϵTi ≥ 2
i+1
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Proof : Let P be a set of n points arranged uniformly
on the boundary of a circle and {p1, p2, ......pi} be any
subset of P , ordered in clockwise direction. Let dj be
the number of points of P between pj and pj+1 and
dmax = max dj .
If dmax is unique, a strip that does not contain any

of the pis can contain dj points,1 ≤ j ≤ i (See strip A
in Figure 6) or 2dj points where dj < dmax(See strip B
in Figure 6). The maximum number of points that can
be present in any of these strips are minimized when all
dj except dmax are the same and 2dj = dmax. There-
fore, dmax = 2n

i+1 . If dmax is not unique, then there

exists a strip having at least 2(n−i)
i points. Therefore,

for sufficiently large n, ϵTi ≥ 2
i+1 .
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Figure 6: Lower bound for strips

Lemma 8 For the family of wedges, ϵWi ≥ 2
i

Proof : Let P be a set of n points arranged uni-
formly along the boundary of a circle. Let N =
{p1, p2, ......pi} ⊂ P partition P into i intervals. A
wedge that does not contain any point from N can still
include all the points from any two intervals. Therefore,
there exists a wedge that contains 2n−i

i points. There-
fore, ϵWi ≥ 2

i .

6 Small Weak Epsilon Nets

In this section, we consider small weak ϵ-nets for disks.
We show an improved lower bound of ϵD3 ≥ 2

7 . This
improves upon the general lower bound of 1

4 .

Lemma 9 ϵD3 ≥ 2
7

Proof : Arrange n points, in seven equal subsets, uni-
formly along the boundary of a circle. Now we claim
that for any three points p, q, r in the plane, we can
draw a circle which contains at least two subsets and
not containing p, q, r.
Consider the line l passing through p and q. l can

intersect at most two subsets. So we assume it intersects
exactly two subsets. If there exist two or more subsets
on both sides of l, we can draw the needed circle on
the side not containing r. So, assume that one side of
l contains at most one subset and hence the other side

of l has at least four subsets and let r lie in that side.
In this case, the line pr contains at least two subsets on
one of the sides and we can draw the needed circle.

Conclusions and Future Work

In this paper, we have shown lower and upper bounds
for ϵSi where S is the family of axis-parallel rectangles,
halfspaces, wedges or strips. An interesting open ques-
tion is to find the exact value of ϵSi for small values of
i. Another interesting question is to obtain non-trivial
bounds on ϵi for the family of disks.
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