
CCCG 2010, Winnipeg MB, August 9–11, 2010

Approximate Shortest Path Algorithms for
Sequences of Pairwise Disjoint Simple Polygons

Xiuxia Pan, Fajie Li∗ Reinhard Klette†

Abstract

Assume that two points p and q are given and a finite
ordered set of simple polygons, all in the same plane; the
basic version of a touring-a-sequence-of-polygons prob-
lem (TPP) is to find a shortest path such that it starts
at p, then visits these polygons in the given order, and
ends at q. This paper describes four approximation al-
gorithms for unconstrained versions of problems defined
by touring an ordered set of polygons. It contributes to
an approximate and partial answer to the previously
open problem “What is the complexity of the touring-
polygons problem for pairwise disjoint, simple and not
necessarily convex polygons?” by providing κ(ε)O(n)
approximation algorithms for solving this problem, ei-
ther for given start and end points p and q, or with
allowing to have those variable, where n is the total
number of vertices of the given k simple and pairwise
disjoint polygons; κ(ε) defines the numerical accuracy
in dependency of a selected ε > 0.

1 Contributions of this Paper

According to [1], “one of the most intriguing open prob-
lems” identified by their results “is to determine the
complexity of the fixed TPP for pairwise disjoint non-
convex simple polygons”. In this paper, we focus on
the unconstrained fixed TPP (i.e., given start and end
point of the path) and floating TPP (i.e., no given start
or end point) under the condition that the convex hulls
of the input polygons Pi are pairwise disjoint, but the
polygons Pi itself may be nonconvex.

Algorithm 2 in Section 2 partially answers the stated
open problem for the fixed TPP by providing an approx-
imation algorithm running in time κ(ε) · O(n), where n
is the total number of vertices of all polygons. The solu-
tion technique proposed in [1] can only handle the fixed
TPP, the fixed safari problem, and the fixed watchman
route problem, all for convex polygons only. Our so-
lution technique is suitable for solving both the fixed
and the floating TPP with the same time complexity,

∗College of Computer Science and Technology,
Huaqiao University, Xiamen, Fujian, China, {panpanty,
li.fajie}@yahoo.com

†Computer Science Department, The University of Auck-
land, Private Bag 92019, Auckland 1142, New Zealand,
r.klette@auckland.ac.nz

also allowing nonconvex polygons Pi with pairwise dis-
joint convex hulls. (Our method might also be useful for
solving the floating watchman route, the floating safari
problem, and the floating zookeeper problem; but this
is not a subject in this paper.)

Regarding approximation (or approximate) algo-
rithms, we refer to the following definition as given, for
example, in [2]: An algorithm is an δ-approximation al-
gorithm for a minimization problem P iff, for each input
instance I of P , the algorithm delivers a solution that
is at most δ times the optimum solution.

Our approximate algorithms are based on the idea of
a rubberband algorithm (RBA); for example, see [4], for
variants of RBAs. Basically, such an algorithm starts
with an initial path through the provided sequence of
step sets (here: polygons Pi), and runs then in it-
erations through those (possibly “adjusted”) sequence
again while reducing (compared to the previous run) the
length of the current path in each run. The important
issue is to guarantee that the resulting Cauchy sequence
of lengths is actually converging to the minimum length
(i.e., the global minimum).

Let ESP denote the class of any Euclidean shortest
path problem. An Euclidean path is a δ-approximation
(Euclidean) path for an ESP problem iff its length is at
most δ times the optimum solution.

We will also refer to a convex hull algorithm (see, e.g.,
[6] or Figure 13.7, [3]), which reads an ordered sequence
of vertices of a planar simple polygonal curve ρ and
outputs an ordered sequence of vertices of the convex
hull of ρ; its running time is O(|V (ρ)|).

The paper is structured as follows: Section 2 provides
in the first subsection approximation algorithms for the
case of the fixed TPP, with either convex or not nec-
essarily convex input polygons, and then in the second
subsection some modifications of those two algorithms
for solving the floating TPP, with either convex or not
necessarily convex input polygons, in the approximate
sense. Section 3 reports about experiments, and Section
4 concludes.

2 The Algorithms

In this section we partially answer the open problem
mentioned in Section 1 by an approximation algorithm
(Algorithm 2). However, we do not only deal with the

22nd Canadian Conference on Computational Geometry, 2010

fixed TPP, we also discuss an approximate solution for
the floating TPP.

2.1 Approximation Algorithms for the Fixed TPP

First we provide an algorithm that only is guaranteed
to find a fixed TPP solution as a local minima, and not
necessarily as the intended global minima. However, if
the input polygons Pi are all convex, then this simple
algorithm already outputs an approximate fixed TPP
solution (with adjustable accuracy) in the global sense.

Algorithm 1 (RBA for a sequence of pairwise disjoint
simple polygons)
Input: A sequence of k pairwise disjoint simple polygons
P1, P2, . . . , Pk in the same plane π; two points p, q /∈⋃k

i=1 Pi, and an accuracy constant ε > 0.
Output: A sequence 〈p, p1, p2, . . . , pk, q〉 which starts at
p = p0, then visits polygons Pi at points pi in the given
order, and finally ends at q = pk+1.

1: For each i ∈ {1, 2, . . . , k}, let initial vertex pi be a
vertex of Pi.

2: Let L0 = ∞. Calculate L1 =
∑k

i=0 de(pi, pi+1),
where p0 = p and pk+1 = q.

3: while L0 − L1 ≥ ε do
4: for i = 1, 2, . . . , k do
5: Compute a point qi ∈ ∂Pi such that (see Fig. 1)

de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) +
de(p, pi+1) : p ∈ ∂Pi}

6: Update the path 〈p, p1, p2, . . . , pk, q〉 by replac-
ing pi by qi.

7: end for
8: Let L0 = L1 and calculate L1 =∑k

i=0 de(pi, pi+1).
9: end while

10: Return 〈p, p1, p2, . . . , pk, q〉.

This algorithm calculates an (1 + 4k × r(ε)/L)-
approximate solution for the fixed TPP and not neces-
sarily only convex polygons Pi, where L is the length of
a shortest path (i.e., the intended global minimum), r(ε)
the upper error bound for distances between pi and its
corresponding optimal vertex p′i (i.e., de(pi, p

′
i) ≤ r(ε),

for i = 1, . . . , k, and de is the Euclidean distance).
Let κ(ε) = L0−L

ε be a function which only depends
upon the difference (!) between the lengths L0 of an
initial path and L of the optimum path, and the ac-
curacy constant ε. Let Lm be the length of the m-th

Figure 1: Initialization in Step 5 of Algorithm 1. Point
pi moves into a new position qi.

updated path, for m = 0, 1, 2, . . ., with Lm − Lm+1 ≥ ε
(otherwise the algorithm stops). It follows that

κ(ε) =
L0 − L

ε
≥ 1+

L1 − L

ε
≥ · · · ≥ m+

Lm − L

ε
(1)

The sequence {m+ Lm−L
ε } is monotonously decreasing,

lower bounded by 0, and stops at the first m0 where
Lm0 − Lm0+1 < ε. This defines a local minimum in
this approximation process. However, it is still possible
that Lm0+1 is not yet “close” to L in the case of non-
convex polygons. For convex input polygons, we may
apply Lemma 1 in [1] which is as follows: For the uncon-
strained TPP, if all input polygons are pairwise disjoint
and convex, then local optimality is equivalent to global
optimality. We immediately obtain the following

Corollary 1 If all input polygons are convex then Al-
gorithm 1 outputs an approximate global solution for the
fixed TPP.

For the case of convex polygons, it is even possible to
derive an explicit expression for the upper bound r(ε).
Obviously, limε→0 r(ε) = 0. Thus, Algorithms 1 may
be “tuned” by a very small ε > 0 to be of very high
accuracy. The time complexity of the algorithm will be
discussed later.

Now we provide a second (heuristic) algorithm which
applies Algorithm 1 on the convex hulls C(P) of the in-
put polygons P in order to obtain an “improved” initial
path whose vertices are located on the frontier of the
convex hulls; then we transform this path in the algo-
rithm into another one such that its vertices are on the
frontier of the input polygons; finally, the algorithm ap-
plies the first algorithm on the input polygons to find a
further improved solution to the fixed TPP.

Algorithm 2 (Algorithm for the fixed TPP; polygons
may be nonconvex)
Input: A sequence of k simple polygons P1, P2, . . . , Pk

such that the convex hulls C(P1), C(P2), . . . , C(Pk) are
pairwise disjoint; two points p, q /∈

⋃k
i=1 C(Pi), and an

accuracy constant ε > 0.
Output: A sequence 〈p, p1, p2, . . . , pk, q〉 which starts at
p, then visits polygon Pi at pi in the given order, and
finally ends at q.

1: For i ∈ {1, 2, . . . , k}, apply the Melkman algorithm
for computing C(Pi).

2: Let C(P1), C(P2), . . . , C(Pk), p, and q be the input
of Algorithm 1 for computing an approximate short-
est route 〈p, p1, . . . , pk, q〉.

3: For i = 1, 2, . . . , k − 1, find a point qi ∈ ∂Pi such
that
de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) +
de(p, pi+1) : p ∈ ∂Pi}. Update the path for each
i by pi = qi.

CCCG 2010, Winnipeg MB, August 9–11, 2010

4: Let P1, P2, . . . , Pk, p and q be the input of Algo-
rithm 1, and points pi as obtained in Step 3 are the
initial vertices pi in Step 1 of Algorithm 1. Continue
with running Algorithm 1.

5: Return 〈p, p1, . . . , pk−1, pk, q〉 as provided in Step 4.

Step 2 iterates through the convex hulls. The iter-
ation through step sets Pi only occurs in Step 4 (i.e.,
when applying Subalgorithm 1 for a second time, using
the same ε). Algorithm 2 provides an (1+(L2−L1)/L)-
approximate global solution for the floating TPP, where
L is the length of an optimal path; L1 is the length of
the path obtained in Step 2; L2 the length of the fi-
nal path obtained in Step 5. Note that L2 ≥ L1, and
L2 = L1 if all polygons Pi are convex.

Theorem 1 Algorithms 1 and 2 may be computed in
time κ(ε)O(n), where n is the total number of vertices
of the involved k polygons Pi.

Proof. In Step 5 of Algorithm 1, each locally optimal
point qi can be computed in the order of |V (Pi)| opera-
tions, where V (Pi) is the set of vertices of Pi. Thus, each
iteration of the for loop takes in the order of n opera-
tions at most. In theory, the number of runs through the
outer while-loop is upper bounded by κ(ε); see Equ. (1).
Thus, Algorithm 1 will run in time κ(ε)O(n). �

Practically, extensive experiments showed that κ(ε)
was always much too large to estimate the actual num-
ber of runs through the outer while-loop. Obviously,
κ(ε) also depends on the selection of the initial path.
By taking fixed initial points pi (e.g., uppermost, left-
most vertex of Pi), the function κ(ε) would only depend
on ε and the configuration of input polygons Pi.

2.2 Approximation Algorithms for the Floating TPP

In this section, we propose two algorithms for the float-
ing TPP. They are derived in a straightforward way
from the two algorithms in the previous subsection.

Algorithm 3 (The “floating version” of Algorithm 1)
Input: A sequence of k pairwise disjoint simple polygons
P0, P1, . . . , Pk−1 in a plane π; an accuracy constant ε >
0.
Output: A sequence 〈p0, p1, p2, . . . , pk〉 (where pk = p0)
which visits polygon Pi at pi in the given order i =
0, 1, 2, . . . , k − 1, and finally i = 0 again).

1: For each i ∈ {0, 1, . . . , k−1}, let initial pi be a vertex
of Pi.

2: Let L0 = ∞. Calculate L1 =
∑k−1

i=0 de(pi, pi+1).
3: while L0 − L1 ≥ ε do
4: for i = 0, 1, . . . , k − 1 do
5: Compute a point qi ∈ ∂Pi such that

de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) +
de(p, pi+1) : p ∈ ∂Pi}

6: Update the route 〈p0, p1, . . . , pk−1〉 by replacing
pi by qi.

7: end for
8: Let L0 be L1 and calculate L1 =∑k−1

i=0 de(pi, pi+1).
9: end while

10: Return 〈p0, p1, . . . , pk−1, pk〉.

This algorithm calculates an [1 + 4k · r(ε)/L]-
approximate solution for the floating TPP and convex
polygons Pi, where L is the length of an optimal path,
and r(ε) the upper error bound for distances between
pi and a corresponding optimal vertex p′i. Regarding a
proof of correctness for Algorithm 3 and convex poly-
gons Pi, it is analogous to the proof of Theorem 3 in [5].
(This proof is actually theoretically challenging, but to
long for this conference paper.) The method of [1], as
cited in the subsection before for the fixed TPP and
convex polygons Pi, is not applicable here for showing
correctness for the case of convex input polygons.

Algorithm 4 The “floating version” of Algorithm 2
Input: A sequence of k simple polygons P0, P1, . . . , Pk−1

such that convex hulls C(P0), C(P1), . . . , C(Pk−1) are
pairwise disjoint and an accuracy constant ε > 0.
Output: A sequence 〈p0, p1, p2, . . . , pk−1, pk〉 (where
pk = p0) which visits polygon Pi at pi in the given
order i = 0, 1, 2, . . . , k − 1, and then i = 0 again).

1: For i ∈ {0, 1, . . . , k − 1}, apply the Melkman algo-
rithm for computing C(Pi).

2: Let C(P0), C(P1), . . . , C(Pk−1) be the input of Al-
gorithm 3 for computing an approximate shortest
route 〈p0, p1, . . . , pk〉.

3: For i = 0, 1, 2, . . . , k − 1, find a point qi ∈ ∂Pi such
that
de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) +
de(p, pi+1) : p ∈ ∂Pi}. Update pi by letting pi be
qi.

4: Let P0, P1, . . . , Pk−1 be the input of Algorithm 3,
and points pi as obtained from Step 3 be the initial
points in Step 1 of Algorithm 3 for computing an
approximate shortest route 〈p0, p1, . . . , pk−1, pk〉.

5: Return 〈p0, p1, . . . , pk−1, pk〉.

This algorithm provides an (1 + (L2 − L1)/L)-
approximate solution for the floating TPP with not nec-
essarily only convex polygons Pi, where L is the length
of an optimal path, L1 is the length of the path obtained
in Step 2, and L2 the length of the final path in Step 5.

Regarding the time complexity of Algorithms 3 and
4, it is obvious that they are the same as that of Algo-
rithms 1 and 2, that is in time κ(ε)O(n), where n is the
total number of vertices of the k involved polygons Pi,
and κ(ε) is the function as defined before.

22nd Canadian Conference on Computational Geometry, 2010

3 Experimental Results

Both Algorithms 2 and 4 were implemented in Java.
On the left (the right) in Figure 2, the red route is ob-
tained by Step 2 of Algorithm 2 (of Algorithm 4), the
blue one is the initial route in Step 4 of Algorithm 2
(of Algorithm 4), and the green one is the final route of
Algorithm 2 (of Algorithm 4) when applying ε = 10−10.
Routes follow a defined order of those polygons. In the

Figure 2: Routes as calculated in Steps 2 (thin lines), 4
(dashed lines), and 5 (bold lines) of Algorithms 2 (left)
and 4 (right).

table below, L1, L2, and L are as defined in the output
of Algorithm 2, while L′1, L′2, and L′ are the correspond-
ing values defined in the output of Algorithm 4:

L1 L2 L δ
2867.069 2888.999 2887.736 1.0076
L′1 L′2 L′ δ′

2521.294 2532.700 2532.700 1.000

Values δ and δ′ are defined by (1+(L2−L1)/L) or (1+
(L′2 −L′1)/L′), respectively. Note their closeness to 1.0!
Both L and L′ are approximate because they are found
by running Algorithms 1 and 2 for 100,000 times (each
time with a randomly selected initial path), and then
selecting the minimum. Note that L2 ≥ L (L′2 ≥ L′)
follows from being approximate solutions for the fixed
or the floating TPP. – For some further examples of
measured run times, see Fig. 3.

4 Concluding Remarks and Future Work

In this paper we present (1 + (L2 − L1)/L)-
approximation algorithms for finding approximate so-
lutions for both the fixed and the floating TPP, where
simple input polygons have to satisfy the condition that
their convex hulls are pairwise disjoint.

Our extensive experimental results indicate that the
theoretical upper time bound κ(ε)O(n) may be replaced
in practice by an upper bound O(n2).

Our algorithms are suitable to solve both the fixed
and floating TPP and have identical theoretical time

Figure 3: Running time (in seconds) of Algorithm 4,
for numbers of randomly generated polygons up to 230.
Implementation: in Java on a PC with Pentium Dual-
Core CPU E5200 2.50 GHz, 1.99 GB memory; all input
polygons with 14 vertices.

complexity while the method of [1] is only suitable to the
fixed TPP and convex polygons. Our method could be
useful for solving the floating watchman route problem,
the floating safari problem, and the floating zookeeper
problem. Moreover, our algorithms are simpler and eas-
ier to understand and implement than that of [1].

In future, we will generalize our algorithms for han-
dling cases where the convex hulls of the polygons are
not necessarily pairwise disjoint.

References

[1] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring
a sequence of polygons. In Proc. STOC, pages 473–482,
2003.

[2] D. S. Hochbaum (editor). Approximation Algorithms for
NP-Hard Problems. PWS Pub. Co.,Boston, 1997.

[3] R. Klette and A. Rosenfeld. Digital Geometry. Morgan
Kaufmann, San Francisco, 2004.

[4] F. Li and R. Klette. Rubberband algorithms for solving
various 2D or 3D shortest path problems. Invited talk, in
IEEE Proc. Computing: Theory and Applications, The
Indian Statistical Institute, Kolkata, pages 9 - 18, 2007.

[5] F. Li and R. Klette. Watchman Route in a Simple
Polygon with a Rubberband Algorithm (down-
load source of Algorithm 1), MI-tech report-51.
www.mi.auckland.ac.nz/index.php?option=com_

content&view=article&id=127&Itemid=113

[6] A. Melkman. On-line construction of the convex hull of a
simple polygon. Information Processing Letters, 25:11–
12, 1987.

