
CCCG 2010, Winnipeg MB, August 9–11, 2010

Speed-Constrained Geodesic Fréchet Distance
Inside a Simple Polygon∗

Anil Maheshwari Jörg-Rüdiger Sack Kaveh Shahbaz Hamid Zarrabi-Zadeh

Abstract

Given two polygonal curves inside a simple polygon, we
study the problem of finding the Fréchet distance be-
tween the two curves under the following two conditions
(i) the distance between two points on the curves is mea-
sured as the length of the shortest path between them
lying inside the simple polygon, and (ii) the traversal
along each segment of the polygonal curves is restricted
to be between a minimum and a maximum permissible
speed assigned to that segment.

1 Introduction

Fréchet distance is a widely-used metric for measuring
the similarity between two geometric objects. It has
applications in morphing, protein structure alignment,
handwriting recognition, GIS, etc. This measure is often
interpreted as the minimum-length leash needed for a
person to walk a dog, while each of them is traversing
a pre-specified polygonal curve.

Various variants of the Fréchet distance have been
studied in the literature. Cook and Wenk [2] studied
the geodesic Fréchet distance inside a simple polygon.
In this variant, the leash is constrained to the interior
of a simple polygon. Therefore, a geodesic distance is
used to measure the length of the leash, which is the
length of the shortest path inside the polygon connect-
ing the two endpoints of the leash. In [2], it is shown
that the geodesic Fréchet distance between two polyg-
onal curves of size n inside a simple polygon of size k
can be computed in O(n2 log kn log n+k) expected time
and O(n2 + k) space.

In [3], Maheshwari et al. introduced a generalization
of the Fréchet distance, in which users are allowed to set
speed limits on each segment. They showed that for two
polygonal curves of size n with speed limits assigned to
their segments, the speed-constrained Fréchet distance
can be computed in O(n2 log2 n) time and O(n2) space.
Note that in this variant, there is no restriction to stay
inside a simple polygon and thus, leash lengths are mea-
sured with Euclidean distance.

∗Research supported by NSERC and SUN Microsystems.
Authors’ affiliation: School of Computer Science, Carleton
University, Ottawa, Ontario K1S 5B6, Canada. Email:
{anil,sack,kshahbaz,zarrabi}@scs.carleton.ca.

In this paper, we study the speed-constrained
geodesic Fréchet distance inside a simple polygon which
is a simultaneous generalization of both Fréchet dis-
tances studied in [2] and [3]. The decision version of
the problem is formulated as follows: Let P and Q be
two polygonal curves inside a simple polygon, with mini-
mum and maximum permissible speeds assigned to each
segment of P and Q. For a given ε > 0, can two point
objects traverse P and Q with permissible speeds (with-
out backtracking) and, throughout the entire traversal,
remain at geodesic distance at most ε from each other?
The objective in the optimization problem is to find the
smallest such ε.

In this paper, we show that the decision version of
the speed-constrained geodesic Fréchet distance prob-
lem can be solved in O(n2(k + n)) time and O(n2 + k)
space, where n is the number of segments in the curves,
and k is the complexity of the simple polygon. Com-
bined with a standard parametric search technique,
this leads to a solution to the optimization problem in
O(n2(k + n) log n) time and O(n2 + k) space.

Algorithms for computing various variants of the
Fréchet distance are typically based on computing a free
space diagram consisting of O(n2) cells, similar to the
one used in [1], and then propagating the reachability in-
formation one by one through the cells. While we adopt
this general approach, the construction of the free space
diagram is more challenging in our problem as we need
to compute the whole free space inside each cell. This is
in contrast to other variants that only need to compute
the free space on the boundaries of the cells. A main
contribution of this paper is thus to fully describe the
structure of the free space inside a cell, establish its com-
plexity, and show how it can be computed efficiently.
Propagating the reachability information through the
cells is also more challenging in our problem compared
to the previous ones in [2, 3], as here, the shape of the
free space inside a cell can substantially affect the pro-
jection of the reachable intervals on its boundaries.

2 Preliminaries

A polygonal curve in Rd is a continuous function
P : [0, n] → Rd with n ∈ N, such that for each
i ∈ {0, . . . , n− 1}, the restriction of P to the inter-
val [i, i + 1] is affine (i.e., forms a line segment). The



22nd Canadian Conference on Computational Geometry, 2010

integer n is called the length of P . Moreover, the se-
quence P (0), . . . , P (n) represents the set of vertices of
P . For each i ∈ {1, . . . , n}, we denote the line segment
P (i − 1)P (i) by Pi. Given a simple polygon K and
two points p, q ∈ K, the geodesic distance of p and q
with respect to K, denoted by dK(p, q), is defined as
the length of the shortest path between p and q that
lies completely inside K.

Speed-constrained geodesic Fréchet distance. Let P
be a polygonal curve such that assigned to each seg-
ment S of P , there is a pair of non-negative real num-
bers (vmin(S), vmax(S)) specifying the minimum and the
maximum permissible speed for moving along S. We
define a speed-constrained parametrization of P to be a
continuous surjective function f : [0, T ] → [0, n] with
T > 0 such that for any i ∈ {1, . . . , n}, the slope
of f at all points t ∈ [f−1(i − 1), f−1(i)] is within
[v̄min(Pi), v̄max(Pi)], where v̄min(S) = vmin(S)/‖S‖ and
v̄max(S) = vmax(S)/‖S‖.

Given a simple polygon K and two polygonal curves
P and Q inside K of lengths n and m respectively
with speed limits assigned to their segments, the speed-
constrained geodesic Fréchet distance of P and Q inside
K is defined as

δF̂ (P,Q) = inf
α,β

max
t∈[0,T ]

dK(P (α(t)), Q(β(t))),

where α : [0, T ] → [0, n] ranges over all speed-
constrained parameterizations of P and β : [0, T ] →
[0,m] ranges over all speed-constrained parameteriza-
tions of Q.

Free space diagram. Let Gn×m = [0, n] × [0,m] be
a n by m rectangle in the plane. Each point (s, t) ∈
Gn×m uniquely represents a pair of points (P (s), Q(t))
on the polygonal curves P and Q. We decompose Gn×m
into n × m unit grid cells Cij = [i − 1, i] × [j − 1, j]
for (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, where each cell Cij
corresponds to a segment Pi on P and a segment Qj on
Q. Given two polygonal curves P and Q inside a simple
polygon K and a parameter ε > 0, the free space Fε is
defined as Fε = {(s, t) ∈ Gn×m | dK(P (s), Q(t)) 6 ε}.
We denote by Lij (resp., by Bij) the left (resp., bottom)
line segment bounding Cij . The entry side of Cij is
defined as entry(Cij) = Lij ∪ Bij , and its exit side as
exit(Cij) = Bi,j+1∪Li+1,j . Given two points p and q on
the boundary of a cell, we say that p is before q, denoted
by p ≺ q, if either px < qx or px = qx & py > qy.

Hourglass data structure. Fix a simple polygon K.
Given two points p, q ∈ K, we denote by π(p, q) the
shortest path between p and q that lies inside K, and
denote its length by ‖π(p, q)‖. Let ab and cd be two non-
crossing line segments inside K. The hourglass Hab,cd is

defined as the maximal region bounded by the segments
ab and cd, and the shortest path chains π(a, c), π(a, d),
π(b, c) and π(b, d). Three examples of hourglasses are
illustrated in Figure 1. Note that for any two points
p ∈ ab and q ∈ cd, the shortest path π(p, q) is contained
in Hab,cd. The intersection of Hab,cd and the boundary
of K consists of at most four polygonal curves, each of
which is called a chain of Hab,cd.

a

b

c

d

(a) (b)

a
c

d

(c)

a

b

c

d

a
c

d

Figure 1: (a) An open hourglass (b) A closed hourglass
(c) An intersecting hourglass.

3 Computing the Free Space Inside a Cell

In the classical Fréchet distance problem [1], the free
space inside each cell is convex and can be determined
in O(1) time. When distances are geodesic, the free
space is not necessarily convex, but it is still connected
and xy-monotone [2]. Therefore, to solve the geodesic
Fréchet distance (without speed limits), one only needs
to compute the free space on the boundaries of the cells
as in [2]. In contrast, in our generalized version we need
to compute the full description of the free space in the
interior of the cells as well in order to propagate the
reachability information correctly.

We use the hourglass data structure to compute the
boundary of the free space inside a cell. Consider an
hourglass Hab,cd and two points p ∈ ab and q ∈ cd. The
shortest path π(p, q) is either a straight segment (in case
p and q see each other), or consists of two tangents from
p and q to the chains of Hab,cd plus a subpath between
the two tangent points. We denote this subpath by
σ(p, q). Note that σ(p, q) consists of a sequence of ver-
tices of K, lying on at most two chains of the hourglass.

Definition 1 Consider an hourglass Hab,cd and two in-

tervals a′b′ ⊆ ab and c′d′ ⊆ cd, so that for any p ∈ a′b′
and any q ∈ c′d′, σ(p, q) is the same. The region
bounded by the intervals a′b′ and c′d′ and the paths
π(a′, c′) and π(b′, d′) is called a butterfly, and is denoted
by Ba′b′,c′d′ (see Figure 2).

Lemma 1 Given a butterfly Ba′b′,c′d′ , the function
f(p, q) = ‖π(p, q)‖ over the domain [a′, b′] × [c′, d′] is
a hyperbolic surface.



CCCG 2010, Winnipeg MB, August 9–11, 2010

Proof. Fix a point p ∈ a′b′ and a point q ∈ c′d′. Let k1
and k2 be the two endpoints of σ(p, q). Then ‖π(p, q)‖ =
‖pk1‖+‖σ(p, q)‖+‖k2q‖. By the butterfly property, k1,
k2, and ‖σ(p, q)‖ are fixed for all p and q in the domain.
Therefore, ‖π(p, q)‖ is the sum of two L2 distances plus
a constant, which forms a hyperbolic surface. �

a

b

c

d

a′

b′
c′

d′

i-points

Figure 2: An hourglass Hab,cd with a butterfly Ba′b′,c′d′ .

Consider an edge e on a chain of the hourglass Hab,cd.

Extend e to a line and find its intersection with ab and
cd (as shown in Figure 2). We call such an intersection
point an i-point. Note that the number of i-points on
each of the segments ab and cd is O(k).

Observation 1 Any two consecutive i-points i1, i2 ∈
ab and any two consecutive i-points j1, j2 ∈ cd form a
butterfly Bi1i2,j1j2 .

Consider two polygonal curves P and Q inside K. Let
Pi = ab be a segment of P , and Qj = cd be a segment of
Q. By dividing ab and cd at i-points, the correspond-
ing cell Cij in the free space diagram is decomposed
into O(k2) subcells, where each subcell corresponds to
a butterfly (see Figure 3).

Let f(p, q) = ‖π(p, q)‖ be a function defined over all
(p, q) ∈ [a, b]× [c, d]. The intersection of the plane z = ε
with the function f determines the boundary of Fε in-
side the cell Cij . The boundary of Fε crosses the bound-
ary of each subcell in at most two points, each of which
is called a c-point. The following two lemmas describe
the structure of the free space inside Cij .

Lemma 2 Any two consecutive c-points on the bound-
ary of Fε are connected with a hyperbolic arc, and the
line segment connecting the two endpoints of the arc lies
completely inside Fε.

Proof. This is a corollary of Lemma 1. �

Lemma 3 The number of c-points inside a cell is O(k).

Proof. This follows from the fact that any xy-
monotone curve intersecting an n × m (non-uniform)
grid can cross at most 2(n+m) cells of the grid. �

NWij

SWij

NEij

SEij

Figure 3: The free space inside a cell.

Computing c-points. Our algorithm for computing c-
points is based on the following observation.

Observation 2 Consider an hourglass Hab,cd and a

fixed ε > 0. Let p be a point moving on ab, and let q be

a point that moves on the line
←→
cd to maintain geodesic

distance ε from p. When p moves monotonically from a

to b, q has at most one directional change along
←→
cd .

Observation 2 enables us to compute all c-points in-
side a cell by two linear walks. Details are provided in
Algorithm 1. In this algorithm, hc refers to a point on
ab which is closest to c, p1 ≺−→ab p2 means that p1 is be-

fore p2 in direction
−→
ab, and F (p, q) refers to the unique

point in the free space diagram corresponding to a point
p ∈ P and q ∈ Q. The output of the algorithm is four
connected c-point chains as depicted in Figure 3.

Algorithm 1 computing c-points inside a cell

Input: An hourglass Hab,cd corresponding to a cell Cij
and a fixed ε > 0.

1: Compute i-points on ab and cd.

2: Find q1, q2 ∈
←→
cd s.t. ‖π(a, q1)‖ = ‖π(a, q2)‖ = ε.

3: Set η1 = q1 and η2 = q2, assuming that q1 ≺−→cd q2.

4: Set µ = a.

5: while µ has not reached b do

6: Move µ in direction
−→
ab, and move η1 on

←→
cd s.t.

‖π(µ, η1)‖ = ε until either µ or η1 reaches an

i-point.

7: if F (µ, η1) ∈ Cij then

8: Insert F (µ, η1) into SWij if µ ≺−→
ab
hc, other-

wise insert F (µ, η1) into NWij .

9: Repeat lines 4–8 with η2 instead of η1 to obtain

NEij and SEij .

10: return NWij , SWij , NEij , and SEij .

Theorem 4 Algorithm 1 computes the free space inside
a cell in O(k) time.



22nd Canadian Conference on Computational Geometry, 2010

4 The Decision Problem

In this section, we show how the decision version of our
Fréchet distance problem can be solved efficiently. We
use the notation of [3]. A path P ⊂ Gn×m is called slope-
constrained if for any point (s, t) ∈ P∩Cij , the slope of P
at (s, t) is within minSlopeij = v̄min(Qj)/v̄max(Pi) and
maxSlopeij = v̄max(Qj)/v̄min(Pi). A point (s, t) ∈ Fε
is called reachable if there is a slope-constrained path
from (0, 0) to (s, t) in Fε. As shown in [3], δF̂ (P,Q) 6 ε
if and only if the point (n,m) is reachable.

Reachable points on the entry side of each cell form a
set of O(n2) disjoint intervals, each of which is called a
reachable interval [3]. To decide if (n,m) is reachable,
the general approach is to propagate the reachability
information one by one, in the row-major order, from
C0,0 to Cnm. The propagation in each cell Cij involves
projecting the set of reachable intervals from the entry
side of the cell to its exit side.

Since the free space inside a cell is not necessarily
convex in our problem, the projection can be affected
by the boundary of Fε inside a cell (see Figure 4). We
use the c-point information computed in the previous
section to compute projections. Indeed, only c-points
on the convex hull of NWij and SEij are needed to
compute correct projections. Since c-points inside each
chain are stored in a sorted x (and y) order, the convex
hull of the chains can be computed using a Graham scan
in O(k) time. We call the convex hull of NWij (resp.,
SEij) the left chain (resp., the right chain) of Cij .

Given a point p ∈ entry(Cij), Algorithm 2 computes
the projection of p onto exit(Cij) in O(log k) time.

Algorithm 2 projection function

Input: A point p ∈ entry(Cij)

1: Let t` and tr be tangents (if they exist) from p to

the left and to the right chain of Cij , respectively.

2: Let a1 and a2 be the projection of p in directions t`
and maxSlopeij , respectively.

3: Let b1 and b2 be the projection of p in directions tr
and minSlopeij , respectively.

4: return [max(a1, a2),min(b1, b2)]

minSlope

maxSlope

Figure 4: Projecting reachable intervals inside cells with
convex and non-convex interior.

Lemma 5 Given a cell Cij with rij reachable intervals
on its entry side, we can project all the reachable inter-
vals onto the exit side of Cij in O(k + rij) time.

Proof. Let t1 be a line in direction minSlopeij tangent
to the left chain of Cij , and let t2 be a line in direc-
tion maxSlopeij tangent to the right chain of Cij . Let
a1 and a2 be the intersection points of t1 and t2 with
entry(Cij), respectively. For any point p ∈ entry(Cij)
that lies outside [a1, a2], the projection of p is empty.
Therefore, we delete those portions of reachable inter-
vals that lie outside [a1, a2]. Now, the projection of each
of the remaining intervals can be simply computed by
projecting its two endpoints.

To avoid spending O(log k) time for projecting each
endpoint, we use a cross-ranking technique to reduce the
total time needed for computing the tangents in Algo-
rithm 2. Let T1 be the list of all endpoints of the reach-
able intervals on entry(Cij) in ≺ order. We construct
another list T2 as follows. Perform an edge traversal of
the right chain, starting with the rightmost edge. Each
edge encountered is extended to a line until it inter-
sects the entry side at a point which is then added to
T2. We merge T1 and T2 (in ≺ order) to create a list
T . Each item in T has a pointer to its corresponding
c-point or reachable interval endpoint, and vice versa.
Moreover, each item in T which comes from T1 keeps a
pointer to its preceding item in T which comes from T2.
Now, given a reachable interval endpoint p, to compute
the tangent from p to the right chain, we simply find the
item t ∈ T corresponding to p, and then find the item in
T2 preceding t in T . This item uniquely determines the
c-point at which the tangent from p to the right chain
occurs. We process the left chain in the same way. This
enables us to compute each tangent in constant time,
after the cross-ranking step, leading to O(k + rij) total
time for projecting all endpoints. �

Combined with the fact that
∑

06i,j6n rij =

O(n3) [3], we get the following result:

Theorem 6 The decision problem can be solved in
O(n2(k + n)) time and O(n2 + k) space.

References

[1] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. of Comput.
Geom. Appl., 5:75–91, 1995.

[2] A. F. Cook and C. Wenk. Geodesic Fréchet distance
inside a simple polygon. In Proc. 25th STACS, pages
193–204, 2008.

[3] A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-
Zadeh. Fréchet distance with speed limits. Technical
Report TR-10-08, School of Computer Science, Car-
leton University, 2010. Preliminary version appeared in
CCCG 2009.


