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Hausdorff Core of a One Reflex Vertex Polygon
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Abstract

In this paper we present a polynomial time algorithm for
computing a Hausdorff core of a polygon with a single
reflex vertex. A Hausdorff core of a polygon P is a
convex polygon Q contained inside P which minimizes
the Hausdorff distance between P andQ. Our algorithm
essentially consists of rotating a line about the reflex
vertex; this line defines a convex polygon by cutting
P . To determine the angle at which the line should be
rotated, our algorithm searches for a global minimum on
the upper envelope of n continuous piecewise functions,
where n is the number of vertices of P .

1 Introduction

Our work is inspired by the problem of providing an ap-
proximation of a polygon which is as close as possible
to the original polygon. There are a number of plausi-
ble measures of ‘closeness’ that one can choose to use,
such as an approximation which minimizes the Haus-
dorff distance, Fréchet distance, or difference in area
between the approximation and the original polygon. In
this work, we are interested in minimizing the Hausdorff
distance, while additionally restricting that the approx-
imating polygon is convex and fully contained in the
original polygon. We formalize this notion presently
with the definition of the Hausdorff core of a polygon.
Given a simple polygon P , a Hausdorff core of P is

a convex polygon Q, such that Q ⊆ P and H(P,Q) is
minimized, where H(P,Q) denotes the Hausdorff dis-
tance between P and Q. Throughout this work, we will
restrict ourselves to simple polygons, where we define
a polygon P as a closed region of the plane, with the
boundary of the polygon ∂P represented as a polygonal
chain with n vertices ∂P = {p1, p2, . . . , pn}.

1.1 Related Work

The problem of approximating polygons may be broadly
classified as approximations which are allowed to inter-
sect the original polygon P , approximations which en-
close P , or approximations which are entirely included
in P . We restrict our discussion to this latter class,
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of which the best known example is the potato-peeling
problem of Chang and Yap [2]. The ‘potato’ is formally
known as the maximum area convex subset (MACS)[3],
which is the largest area convex polygon contained in P .
There is an O(n7) time algorithm for this problem, and
an O(n6) time algorithm for maximizing the perimeter
of a contained convex polygon, where n is the number of
vertices of P [2]. Recently, Dorrigiv et al. [5] provided
a PTAS for the general Hausdorff core problem on sim-
ple polygons. Their technique noted that the problem
may be reduced to a disk stabbing problem with the
restriction that the stabbing sequence does not cross
outside of the original polygon. A triangle of maximal
area contained in a convex polygon can be found in lin-
ear time [4], while the regular k-gon of maximal area
can be found in time O(kn+ n log n) [1].
Studies which use the Hausdorff measure for approx-

imation have generally used restricted classes of poly-
gons. Lopez and Reisner [6] presented polynomial-time
approximation algorithms for approximating a convex
polygon with a convex polygon of lower complexity. The
dual problem was also studied, where the solution pro-
vides the minimum number of vertices of the approx-
imating polygon given a maximum allowed Hausdorff
distance. They show that both inclusion and enclosure
problems can be approximated to within one vertex of
the optimal in O(n log n) time and O(n) time, respec-
tively.
Chassery and Coeurjolly [3] presented an algorithm

for determining a Hausdorff core of a polygon by shrink-
ing the input polygon P until its convex hull is contained
in the original P . If the shrunken polygon P ′ is not con-
vex, then the convex hull of P ′ contains a vertex of P
which lies on an edge e of P ′. e is used as a cutting
line upon P to obtain a new polygon P1 to be shrunk.
The procedure is repeated to obtain P ′

i from Pi until
P ′
i is convex. If the Euclidean 1-centre of P is not con-

tained in P , it is possible to construct examples where
this algorithm would not return a Hausdorff core of P ,
as shown in [5].

2 Hausdorff Distance

We define the Hausdorff distanceH(P,Q) between poly-
gons P and Q as

H(P,Q) = max

{
max
p∈P

min
q∈Q

dist(p, q),max
q∈Q

min
p∈P

dist(p, q)

}
,
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where dist(p, q) denotes the Euclidean distance between
points p and q. Given a simple polygon P , a Hausdorff
core of P is a polygon Q where Q is convex, Q ⊆ P , and
H(P,Q) is minimized. There is not necessarily a unique
Hausdorff core solution; our objective is to determine
any arbitrary optimal solution.

Lemma 1 One edge of a Hausdorff core Q will be a
segment of a line ℓ which intersects the reflex vertex r.

Proof. Suppose that this is not the case. ℓ intersects
∂P at two points, call them ℓ1 and ℓ2. Choosing ℓ1
w.l.o.g., rotate ℓ about ℓ1 until it intersects r; call the
resulting polygon Q′. Q′ remains convex because ℓ re-
mains a straight line defining the cut, and Q ⊆ Q′.
Therefore, H(P,Q) ≥ H(P,Q′). �

Given that ℓ intersects r, we can regard the resulting
partition of the polygon as being composed of three con-
vex regions (one of which may be empty), called Qa, Qb,
and Qc. We will define these in counter-clockwise order
around r so that the line segment ℓ1r defines an edge of
Qa, ℓ1ℓ2 defines an edge of Qb, and rℓ2 defines an edge
of Qc. This arrangement is illustrated in Figure 1.

Lemma 2 The optimal solution polygon Q can always
be defined by some Qb.

Proof. Suppose that this is not the case, and instead
Q is defined by Qa w.l.o.g.. Choosing ℓ so that rp1
lies on ℓ creates an arrangement where Q′

a is empty
and Qa ⊂ Q′

b for all possible polygons Qa. Therefore,
H(P,Qa) ≥ H(P,Q′

b). �

r
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Figure 1: The line ℓ defines a cut through polygon P ,
which defines three convex regions Qa, Qb, and Qc.

2.1 Measuring the Hausdorff Distance in Polygons

In our problem, we are interested in measuring the dis-
tance from the vertices of polygon P to the approximat-
ing polygon Q. We divide the vertices of ∂P into two

sets ∂PI and ∂PE , where ∂PI are the vertices of ∂P in
P ∩Q, and ∂PE = ∂P − ∂PI .

Lemma 3 The maximum distance from P to Q occurs
at a vertex of P .

This is a weaker version of Lemma 1 in [5], which
states that the maximum distance from P to Q occurs
at a vertex of the convex hull of P .

Since the vertices of PI do not need to be considered
for the Hausdorff distance measure, as they are con-
tained within Q, the nature of the problem is reduced
to finding the distance from the vertices of PE to the
closest point on ℓ∩ P . There are two cases to consider:
either the nearest point on ℓ ∩ P is somewhere on the
interior of the line segment, or the nearest point lies at
one of the endpoints.

If the former case is true, then the technique for mea-
suring the distance is trivial. Suppose we are consid-
ering vertex pi, and the nearest point on ℓ is ℓi. In
this case the points (r, pi, ℓi) define a right-angled tri-
angle, and the distance between pi and r is fixed. There-
fore, the distance from pi to ℓ is defined as dist(pi, ℓi) =
dist(pi, r) sin θ, where θ = ∠(pi, r, ℓi).
In the latter case, describing the nearest point is

slightly more difficult, as it is either ℓ1 or ℓ2 . For our
purposes here we will assume w.l.o.g. that the nearest
point is ℓ1. We express dist(pi, ℓ1) in terms of the inter-

section between the ray
−→
rl1 and ∂P . We formalize this

case further in the next section.

3 Finding the Optimal Solution

Our algorithm essentially consists of sweeping ℓ through
P by rotating it about r to discover the angle at which
the distance between vertices of PE and ℓ ∩ P is mini-
mized. For convenience of exposition, we rotate P about
r by the angle required to align rp1 horizontally; i.e.
p1 = (rx + dist(rx, p1), ry). We then perform the sweep
in a counterclockwise fashion, such that θ1 = 0 is the
initial state when ℓ intersects p1, and θn−1 < π is the
final state when ℓ intersects pn−1.

3.1 Expressing the Distance to Each Point

For each point pi, we define a set of intervals Ii using
the circle Ci with diameter rpi. Suppose that the circle
Ci intersects P at k points, c1, ..., ck, distinct from any
pi. We define the points t1, ..., tn+k−1 to be

(
∪k
d=1cd

)
∪(

∪n−1
e=1 pe

)
, such that t1 = p1 and each tj follows tj−1

by moving counterclockwise along the perimeter of P .
Then Ii = {[t1, t2), [t2, t3), ..., [tn+k−2, tn+k−1]}. Thus,
each non-reflex vertex in P and each intersection point
between Ci and P appear as endpoints of the intervals
in Ii.
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Each interval, [tj , tj+1), is either contained entirely
within Ci, or entirely outside Ci. In the former case we
refer to the interval as an inner interval, and in the lat-
ter case an outer interval. Let I+i be the set containing
all inner intervals from Ii, and I−i be set containing all
outer intervals from Ii.

Observation 1 Suppose for some value of θ, ℓ1 is con-
tained within the interval [tj , tj+1). Then if [tj , tj+1) ∈
I+i , the nearest point on ℓ to pi is ℓ1; otherwise the near-
est point lies on the interior of the line segment rℓ1. An
identical claim can be made when the nearest point is ℓ2.

We now define the function g(pi, θ) to be the distance
between pi ∈ PE and ℓ, when ℓ is rotated clockwise by
an angle of θ from its starting orientation θ1. Since
PE changes as ℓ rotates through a vertex, we actually
keep track of all pi ∈ P , noting that g(pi, θ) = 0 when
pi ̸∈ PE . As we discussed earlier, g(pi, θ) for fixed pi is a
piecewise continuous function. As we vary θ, the func-
tion used to compute the distance changes depending
on whether the nearest point from pi to ℓ is contained
in rℓ1 or rℓ2; w.l.o.g., we assume the nearest point pi
is always contained within the segment rℓ1. Next, sup-
pose that ℓ1 lies within the interval (u, v). If (u, v) is
an outer interval, then we can compute the distance to
ℓ∩P using a right triangle. If (u, v) is an inner interval,
then the minimum distance to ℓ ∩ P occurs at the end-
point ℓ1. Otherwise, we express ℓ1 as the intersection

between the ray
−→
rl1 and the segment (u, v). Thus we

have:

g(pi, θ) =

{
dist(pi, r) sin(|θi − θ|) if (u, v) ∈ I−i
dist(pi, ℓ1) otherwise

(1)

where

ℓ1 = (ux + z(vx − ux), uy + z(vy − uy)) , (2)

and

z =
ry − uy + tan θ(ux − rx)

vy − uy − tan θ(vx − ux)
. (3)

Since Ci can intersect P at most O(n) times, k ∈
O(n). Thus, for each pi, g(pi, θ) consists of O(n) por-
tions. We also note that g(pi, θ) is continuous through-
out the domain [0, θn−1], and that each portion of
g(pi, θ) is unimodal for its domain. Thus, a minima
of one portion can be found in constant time.

3.2 Minimizing the Maximum Distance

We have discussed how to compute the distance between
a single vertex of P , pi, and the line ℓ. However, our
objective is to minimize the maximum distance between
PE and ℓ ∩ P . To do this, we need to compute:

min
0≤θ≤θn−1

G(θ) , (4)

where

G(θ) = max
1≤i≤n−1

g(pi, θ) . (5)

We now describe how to merge two piecewise
continuous functions g(pj , θ) and g(pj+1, θ), to cre-
ate a new piecewise continuous function g′(θ) =
max{g(pj , θ), g(pj+1, θ)}. To compute the intersection
points between two overlapping portions of g(pj , θ) and
g(pj+1, θ), we observe that there are three cases: i)
both portions represent inner intervals, ii) both por-
tions represent outer intervals, and iii) one portion is
an inner interval and the other is an outer interval. In
all three cases the intersection points have analytic so-
lutions1. Furthermore, since the domain of each func-
tion is [0, θn−1] and θn−1 < π, the number of intersec-
tion points between any two portions is constant. This
means that the number of intersection points between
g(pj , θ) and g(pj+1, θ) is O(n).

Continuing this process, we can construct G(θ) by
performing n−2 merge steps like the one just described.
Since we have n−1 continuous functions such that each
pair have O(n) intersections, we can apply the upper
bound from [7, p.8]. Therefore, the upper envelope of
the functions, G(θ), consists of at most O(n3) portions.
Each of these pieces can be examined in constant time
to find the minimum value. Thus the overall running
time is polynomial in n.

4 Example

In this section, we provide an example (Figure 2) to
illustrate the operation of our algorithm. Consider the
vertex p1 in Figure 2. To begin with, we set θ = 0 and
the current solution ℓ intersects p1. As θ is increased,
the minimum distance to ℓ follows along p1p2 until point
t3, when the minimum distance function changes to the
sin function to follow the path of the circle through the
interior of P until it meets the boundary at point A.
At this point, the minimum distance function changes
again to follow p3p4 to point p4, at which point our
sweep concludes.

The point of intersection between the two functions
converging on the right of Figure 3 lie just outside of the
range of the graph, (θ = 161.58, while viable solutions
lie in the range θ = 0 . . . 161.565). The minimal value
of the upper boundary of the graph is at θ = 161.565,
where the Hausdorff distance H(P,Q) =

√
(17), corre-

sponding to the distance between points p1 and p4.

1The closed form solutions are quite large, which is why we do
not explicitly state them.
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Figure 2: A polygon P with reflex vertex r is shown.
Lines indicate boundaries between intervals, where solid
lines indicate interval boundaries defined by vertices of
P , and dashed lines indicate boundaries defined by the
transition between distance functions for a vertex. The
latter transitions occur at the intersection points of the
boundary of polygon with the diametrical circles defined
between r and each other vertex pi ∈ P . The shaded
area indicates the optimal solution Q.

Figure 3: A plot showing the curves corresponding to
the distances from the vertices of P to the solution poly-
gon Q for all possible values of θ.

5 Conclusions

In this work we have presented an exact algorithm for
determining a Hausdorff core of a polygon with one re-

flex vertex in polynomial time. The algorithm measures
the distance from the excluded vertices of the original
polygon P to the cut line defining the approximating
polygon Q. The Hausdorff distance between the poly-
gons H(P,Q) for a given cut is described by the max-
imum such distance, and so the problem may be for-
mulated in terms of a set of piecewise functions whose
maximum for a given line corresponds to H(P,Q). By
determining the minimum maximum value over all pos-
sible cuts, we determine the optimal Hausdorff approx-
imation for P .
The algorithm is not immediately extendable to poly-

gons containing more than one reflex vertex, since the
problem is complicated by the interaction between the
cutting lines. It is also interesting to compare our prob-
lem to the potato peeling problem. In the potato peel-
ing problem, if P has only one reflex vertex then finding
the optimal solution is trivial; only three cases need to
be considered [2]. This seems to suggest that finding
the exact Hausdorff core is a more difficult problem in
general.
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