CCCG 2010, Winnipeg MB, August 9-11, 2010

Shooting Bricks with Orthogonal Laser Beams:
A First Step towards Internal/External Map Labeling

Maarten Loffler*

Abstract

We study several variants of a hybrid map labeling prob-
lem that combines the following two tasks: (i) a set A of
points in a rectangle R needs to be labeled with rectan-
gular labels on the right boundary of R using rectilinear
one-bend polylines called leaders to connect points and
labels; (ii) a maximum subset B’ of a set B of fixed
internal congruent rectangular labels in R needs to be
selected such that B’ is an independent set of labels and
no leader intersects any label in B’. We also call the
points in A aliens, the labels of B bricks, and the leaders
laser beams. Then the problem translates into every
alien shooting a laser beam so that in total as few bricks
as possible are destroyed. We provide algorithms and
NP-hardness results for different variants of the problem.

1 Introduction

Assume that we are given a rectangular map R with
n points that are to be labeled by rectangular labels.
It is required for readability of the map that no label
overlaps another label or any of the input points. In
internal labeling models, each label must be close to the
labeled point, i.e., it usually needs to touch the point
on its boundary. For instance, in the p-position model
for p € {1,2,4} labels must touch the points at one of
p admissible corners. Maximizing the number of labels
that can be placed is NP-hard for any such p [4,7].

An alternative external labeling model, in which all
n input points can always be labeled (for sufficiently
large R), is known as boundary labeling [1-3,6]. In this
model all labels are placed on one, two, or four sides of
the boundary of R. Points are connected to their labels
with arcs called leaders. In order to keep the map clean,
leaders are usually required to be crossing-free and to
have a prescribed simple shape, e.g., rectilinear polylines
with at most one bend. One may require the leaders
to be spaced by at least the height of a label, so that
there is no label overlap on the boundary; alternatively,
one could create the necessary spacing of the labels, e.g.,
by using two extra bends per leader in the so-called
track-routing area [2] outside of R. Typical optimization

*Department of Computer Science, University of California,
Irvine, mloffler@uci.edu, noellenburg@kit.edu

Martin Néllenburg*

e
B o

(a) (b)

Figure 1: An alien surrounded by bricks. (a) Shooting straight
destroys four bricks. (b) The optimal solution.

criteria in boundary labeling are minimizing the total
leader length or minimizing the total number of bends.

In the boundary labeling model, however, all labels
must be on the boundary of R, even though some points
would allow for an internal label, which is generally
more favorable from the application’s perspective. One
of the open problems mentioned by Bekos et al. [1] and
Kaufmann [6] is to study map labeling in a mixed model,
where some points receive internal (fixed-position) labels
and the remaining points are labeled externally. In such
a mixed model, an additional requirement is that no
leader may cross any of the internal labels.

In this paper, as a first step towards map labeling in
the mixed model, we assume that the n input points
are already partitioned into two sets A and B. The
points in A must all be labeled externally using so-called
po-leaders (they first run parallel to and then orthogonal
to the labeled side of R) [2], which have by definition
at most one bend. We consider the one-sided boundary
labeling model, where all labels are placed on the right
side of R. The points in B, on the other hand, can only
be labeled internally using congruent rectangular labels
with a fixed position. Depending on the placement of
the leaders for A, some points in B may or may not be
labelable. The goal is to label all points in A and to
maximize the number of labeled points in B.

In the following we call the points in A aliens. We
identify each point in B with its fixed label and call the
labels in B bricks. Instead of connecting each alien with
a leader to the right side of R, we say that each alien
has a laser gun that can shoot a one-bend rectilinear
laser beam to the right side of R. Figure 1 shows an
example. Each laser beam consists of a (possibly empty)
vertical laser segment followed by a horizontal laser ray.
Consequently, we can say that a laser beam destroys all

2274 Canadian Conference on Computational Geometry, 2010

V

() (b)

Figure 2: An instance with five aliens. (a) For the non-spaced
ABP at least three bricks must be destroyed. (b) For the spaced
and crossing ABP at least five bricks must be destroyed.

bricks that are hit by the laser beam. The map labeling
problem then translates into the problem that every
alien must shoot its laser gun exactly once in a way that
minimizes the total number of destroyed bricks. We call
this problem the aliens-and-bricks problem (ABP).

Parameters The ABP can be further described by three
independent parameters that yield in total eight different
versions of the problem. Figure 2 shows two examples.

1. Bricks are either all disjoint or they have overlaps;
in the latter case we need to find an independent
set of bricks. Accordingly, we call an ABP instance
disjoint or non-disjoint. We may further require
that the independent set of bricks does not occlude
a given, e.g., the top left, corner of any brick.

2. Laser beams can either cross each other at 90-degree
angles or they cannot cross each other. The options
are denoted as crossing and non-crossing.

3. Horizontal laser rays can either come arbitrarily
close to each other or they have to stay at least one
unit apart. Accordingly, we call an ABP instance
spaced or non-spaced. We may further require that
the vertical laser segments are also spaced.

2 Non-Spaced Variant

In this section we consider non-spaced laser beams. We
note that in this case the issue of crossings is irrelevant:
any crossing could be removed at no additional cost by re-
routing the laser beam whose vertical segment is involved
in the crossing so that the beam turns horizontal just
before hitting the other laser beam. Hence, we restrict
ourselves to non-crossing lasers beams.

2.1 Disjoint Bricks

When the interiors of the bricks are all disjoint, we can
solve the problem in polynomial time using dynamic
programming. Assume all laser beams are in an optimal
configuration that does not have any crossings. Let
a € A be an alien and consider the right open half-strip
S that is defined by the vertical line ¢, through a, the

- PP gy, _:f-'.--'
=l B up-%-;'—.
° o ° (| olEE
(a) (b)

Figure 3: (a) A subproblem defined by a current alien (indicated
by the black vertical line £), two laser rays above and below it,
and a marking of the bricks stabbed by ¢. (b) A possible way for
the current alien to shoot, and the resulting two subproblems.

y-coordinate y; of the lowest laser ray above a, and the
y-coordinate ¥, of the highest laser ray below a. Because
we have no crossings, a must shoot somewhere into S,
which subdivides .S into two smaller strips. Furthermore,
let B, C B be the set of bricks that are stabbed by £,
and lie completely between y, and y;. Then an optimal
solution for all aliens inside S (including a) depends
only on S and, additionally, on which bricks of B, have
already been shot by previous aliens outside S. Figure 3
shows an example of such a strip and how it divides into
two independent smaller subproblems.

The algorithm is now standard dynamic programming.
We store the solution of each subproblem, defined by a
strip S and a subset of the corresponding set of bricks
B,. To solve a subproblem, we go over the linear number
of combinatorially different possible ways to shoot the
current beam b, look up the resulting two subproblems,
and add to their joint cost the number of bricks newly de-
stroyed by b. We choose the solution with minimum cost.
The number of bricks destroyed by b can be computed
by sweeping b over the half-strip of the subproblem and
keeping track of the number of intersected bricks. This
clearly takes linear time for each subproblem.

However, it is not so clear that the algorithm is effi-
cient, since there could in principle be an exponential
number of subsets of B, that are marked as unshot, and
therefore an exponential number of subproblems to solve.
We proceed by showing that this is not the case and that
it suffices to consider a linear number of subsets of B,.

Lemma 1 Let S be a half-strip defined as before by an
alien a and two horizontal laser rays. There is only a

linear number of subsets of B, that can be shot by aliens
on the left of £,.

Proof. (Sketch) The basic idea is that the set of bricks
that is destroyed depends only on the pieces of laser
beams that are visible from ¢,. Now, if we fix an alien
a’ as the leftmost alien that can still see ¢,, then this
determines the direction in which all aliens between a’
and a must shoot (in order not to block a’). We show
that this leads to a quadratic number of configurations
of visible laser beams, of which only a linear number can
hit a different subset of B,,. O

CCCG 2010, Winnipeg MB, August 9-11, 2010

(a)

Figure 4: (a) An edge is a diagonal strip of width 2 of overlap-
ping bricks. It has two states with equal cost. (b) A vertex is a
single brick that overlaps three edges. Its two vertices overlap
different states of an edge: if v; is present then vz cannot be.

There are clearly O(n®) essentially different half-
strips S that can define a subproblem. For each strip,
by Lemma 1, we need to consider a linear number of
subsets of B,. So we have a total of O(n*) possible
subproblems. Finally, looking up a specific subproblem
in constant time is not trivial since it is not clear how to
index a particular subset of bricks. We suggest to order
all bricks in B, and then use for each half-strip defined
by the three parameters (a,y:, y») a simple search tree
according to the order of B to access the correct value
corresponding to a particular subset of bricks of B,. By
Lemma 1, this tree has linear size, but its height can also
be linear. Therefore, looking up the value of a particular
subproblem takes linear time in the worst case. This
yields the following result:

Theorem 2 The disjoint, non-spaced ABP can be solved
in O(n%) time using O(n*) space.

2.2 Overlapping Bricks

For non-disjoint bricks it is generally NP-hard to find a
maximum independent set of bricks, even when there are
no aliens. Klau and Mutzel [7] refer to an unpublished
result by Woeginger that this can be proven using a
reduction from the NP-complete maximum independent
set problem in planar graphs with maximum degree 3 [5].
For completeness, we briefly sketch how this can be
done: we “draw” the planar input graph using edges
made of overlapping bricks as in Figure 4(a), and using
a single brick for each vertex as in Figure 4(b). Then
the reduction is immediate.

Theorem 3 The overlapping, non-spaced ABP without
further restrictions is NP-hard.

However, motivated by the 1-position map labeling
model, we may require that no brick in B contains a fixed
corner (say, the top left one) of any other brick as that
corner coincides with the labeled point. In this case over-
lapping bricks form only simple monotone structures for
which the independent set problem can be easily solved.
In fact, the algorithm for disjoint bricks still works with
a few modifications. When solving a subproblem, still
defined by a half-strip S and a subset of bricks, for each
choice of the y-coordinate for the bend in a’s beam we

need to choose an independent set of bricks in the area
of S that is not covered by the strips of the subproblems.
We show in the full version of the paper that it suffices
to greedily take bricks from left to right. This greedy
process may result in some bricks overlapping the left
boundary of the subproblem strips to not be chosen, but
we can still show an equivalent of Lemma 1 in this case.
We arrive at the following result:

Theorem 4 The overlapping, non-spaced ABP, where
bricks cannot contain top left corners of other bricks can
be solved in O(n®) time using O(n*) space.

3 Spaced Variant

We now add the restriction that the horizontal laser rays
must be vertically spaced. In this case, it does matter
whether we allow beams to cross or not. We also discuss
horizontal spacing of the vertical laser segments.

3.1 Crossing Variant

We show that the ABP is NP-hard if we require vertically
spaced horizontal laser rays and allow crossings between
laser beams. The construction does not use overlap-
ping bricks. Let I be an instance of MAX2SAT with n
variables 1, ...,x, and m clauses ci, ..., ¢, such that
each variable x; appears in at most three clauses. The
problem of finding a truth value assignment for the vari-
ables that maximizes the number of satisfied clauses in
I is NP-complete [8]. Figure 5 shows an example of our
reduction with four variable and four clause gadgets.

The variable gadget consists of an alien whose laser
beam is vertically blocked by two “indestructible” bricks
(actually large blocks of C' x C bricks for large enough
(). Towards the right, each variable alien has an upper
and a lower choice of shooting its laser beam, both with
the same cost, corresponding to the values true and false
of the variable. Furthermore, there is a “wall” of bricks
to the far right that has to be crossed by any laser beam,
unless it runs below or above the wall.

For a clause ¢ in the formula containing variables x;
and z;, we place an alien a in a new row somewhere
between the gadgets for z; and z;. Assuming z; is
above z;, if ; is a positive (negative) literal of ¢, we
add a clause-connector brick vertically above a in the
upper (lower) row of x;, and we analogously add a clause-
connector brick for the literal of x; vertically below a.
For every clause we use a new column so that a vertical
line through any clause alien intersects exactly the two
connector bricks for that clause.

Now, if one of the literals of a clause is true then
its corresponding clause-connector brick is destroyed.
Hence the clause alien can shoot its laser beam vertically
through that brick at no cost until it reaches beyond the
construction, where it can turn to the right and reach

2274 Canadian Conference on Computational Geometry, 2010

xr1V T2
== T2 V Ty
T1 & — = true
zz
=
i ' i ' true
To & = s
=) =
To \Y I3
T3 o == 2 h false
= 2
= - .,
I V xr3

Figure 5: Aliens (points) and bricks representing a MAX2SAT
formula with four variables and four clauses.

the right side of R. If, however, both literals of a clause
are false, then no matter how the alien shoots its laser
beam, it must destroy at least one extra brick.

Theorem 5 The spaced and crossing ABP is NP-hard.
This is independent of the disjointness of the bricks.

3.2 Non-Crossing Variant

Interestingly, if we restrict the laser beams further by
not allowing them to cross, we can solve the problem
in polynomial time again. We omit the details, but
essentially we need to shrink the half-strip S defining a
subproblem by the appropriate amount.

Theorem 6 The spaced non-crossing ABP can be solved
in O(nS) time using O(n*) space, both for the disjoint
and non-disjoint versions of ABP.

3.3 Horizontal Spacing

When we require laser beams to be horizontally spaced
as well as vertically, a solution is not always possible.
If we do allow crossings, then the NP-hardness proof of
the previous section can be adapted to show that this
problem is also hard. Without crossings, however, we
can find an optimal solution (if it exists) in O(n*) time,
assuming unit spacing and constant width bricks. Again
we omit the details, but the main reason is that the
number of aliens involved in shooting bricks in B, is
limited, so instead of a linear number of subsets we only
need to consider a constant number.

Theorem 7 The doubly spaced non-crossing ABP can
be solved in O(n*) time using O(n®) space.

4 Discussion

We studied six main variants of the ABP and presented al-
gorithms or NP-hardness results for each variant. There
is a trade-off between the different versions: by adding

more restrictions (such as not allowing crossings or re-
quiring vertical spacing) the resulting drawing may look
cleaner, but obviously fewer bricks can be placed. Per-
haps surprisingly, the least and most restricted variants
of the problem can both be solved in polynomial time
using essentially the same algorithm, while one of the
in-between variants is NP-hard. Apart from the vari-
ants we studied, many more variants are conceivable by
considering different ways for internal labeling (more
or different label positions) or external labeling (more
bends per leader, labels at multiple sides of R) that
would be interesting to study.

We assumed that the sets of aliens A and bricks B are
given as two separate sets. However, in the map labeling
formulation of the problem, it may be more realistic to
assume that all input points belong to a single set, and
that every point is labeled either internally or externally.
We then want to maximize the number of internally
labeled points. One easy observation is that if no two
internal labels (bricks) overlap, the problem becomes
trivial since in the optimal solution all points will be
labeled internally. The hardness result of Theorem 5 does
extend to this situation after some adaptation. Mostly
though, this version of the problem, suggested by [1, 6],
remains open. We hope that our results in this note
constitute a first step towards solving it.

Acknowledgments. This research was supported
by the German Research Foundation under grant
NO 899/1-1 and by the Office of Naval Research un-
der MURI grant N00014-08-1-1015.

References

[1] M. Bekos, M. Kaufmann, M. Néllenburg, and A. Symvo-
nis. Boundary labeling with octilinear leaders. Algorith-
mica, 57:436-461, 2010.

[2] M. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff.
Boundary labeling: Models and efficient algorithms for
rectangular maps. Com. Geo. Th. Ap., 36:215-236, 2007.

[3] M. Benkert, H. Haverkort, M. Kroll, and M. Néllenburg.
Algorithms for multi-criteria boundary labeling. J. Graph
Algorithms Appl., 13(3):289-317, 2009.

[4] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In Proc. 7th Ann. ACM
Symp. Comput. Geom. (SoCG’91), pages 281-288, 1991.

[6] M. R. Garey and D. S. Johnson. The rectilinear Steiner
tree problem is NP-complete. SIAM J. Appl. Math.,
32(4):826-834, 1977.

[6] M. Kaufmann. On map labeling with leaders. In S. Albers,
H. Alt, and S. Néaher, editors, Efficient Algorithms, LNCS
5760, pages 290-304. Springer-Verlag, 2009.

[7] G. W. Klau and P. Mutzel. Optimal labeling of point
features in rectangular labeling models. Mathematical
Programming, 94(2):435-458, 2003.

[8] V. Raman, B. Ravikumar, and S. S. Rao. A simplified
NP-complete MAXSAT problem. IPL, 65:1-6, 1998.

