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On the Variance of Random Polygons
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Abstract

A random polygon is the convex hull of uniformly dis-
tributed random points in a convex body K ⊂ R2. Gen-
eral upper bounds are established for the variance of the
area of a random polygon and also for the variance of its
number of vertices. The upper bounds have the same
order of magnitude as the known lower bounds on vari-
ance for these functionals. The results imply a strong
law of large numbers for the area and number of ver-
tices of random polygons for all planar convex bodies.
Similar results had been known, but only in the special
cases when K is a polygon or where K is a smooth con-
vex body. The careful, technical arguments we needed
may lead to tools for analogous extensions to general
convex bodies in higher dimension. On the other hand
one of the main results is a stronger version in dimension
d = 2 of the economic cap covering theorem of Bárány
and Larman. It is crucial to our proof, but it does not
extend to higher dimension.

1 The main results

Let K ⊂ Rd be a convex set of volume one (we write
V (K) = 1) and let x1, . . . , xn be a random sample
of n independent, identically distributed points cho-
sen uniformly from K. The random polytope Kn ≡
Conv{x1, . . . , xn} is the convex hull of these points. Un-
derstanding the asymptotic behaviour of Kn is one of
the classical problems in stochastic geometry. Start-
ing with Rényi and Sulanke [7] in 1963, there have been
many results concerning the expectation of various func-
tionals of Kn. For instance the expectation of the ran-
dom variables like the missed volume V (K \ Kn), and
of f0(Kn), the number vertices of Kn, have been deter-
mined with high precision (see e.g., the book by Schnei-
der and Weil [10].

Determining the variance is more difficult. For
smooth convex bodies its order of magnitude was deter-
mined by Reitzner [8] and [9]. Schreiber and Yukich [11]
have computed the precise asymptotic behaviour of the
variance of f0(Kn) when K is the unit ball, a signifi-
cant breakthrough. Recently Bárány and Reitzner [3]
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obtained a lower bound on the the variance of V (Kn)
and also of f`(Kn) for general convex bodies (f` counts
the number of `-dimensional faces).

In order to state the results we need a few definitions.
First, v : K → R is the function given by

v(z) = min{V (K ∩H) : H is a halfspace and z ∈ H}.

The floating body with parameter t is just the level set
K(v ≥ t) = {z ∈ K : v(z) ≥ t}, which is clearly convex.
The set K(v ≤ t) is called the wet part, that is, where
v is at most t. The general lower bound for variance is

Proposition 1 ( [3]) Assume K ⊂ Rd is a convex body
of volume one. Then

n−1V (K(v ≤ n−1)) � VarV (K \Kn)
nV (K(v ≤ n−1)) � Varf`(Kn)

We use Vinogradov’s f(n) � g(n) notation which
means that there are constants n0 and c0 > 0 (depend-
ing possibly on d but not on K) such that f(n) ≤ c0g(n)
for every n ≥ n0.

The main contribution of the present paper is a
matching upper bound for the planar case d = 2.1

Theorem 2 Assume K ⊂ R2 is a convex body of area
one. Then

VarV (K \Kn) � n−1V (K(v ≤ n−1))
Varf0(Kn) � nV (K(v ≤ n−1)).

Note that the constants implied by the � notation are
universal because d = 2. An advantage of this kind of
result is that it is usually much easier to compute the
volume of the wet part than the variance of Kn.

Statements similar to Theorems 1 and 2 are known
for the expectations (see [2]), for instance

V (K(v ≤ n−1)) � IEV (K \Kn) � V (K(v ≤ n−1)).

This fact and Theorem 2 combine to imply a strong law
of large numbers for V (Kn) and for f0(Kn) in the plane.

1This result is the first nontrivial case of the conjecture from
[3] that states the same upper bounds in all dimensions. It was
known to be true for smooth convex bodies (see Reitzner [9]),
and a slightly weaker upper bound is proved in [3] when K is a
polytope. Recently John Pardon [6] has proved the same upper
bound, and much more.
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Corollary 3 Assume K ⊂ R2 is a convex body of area
one and let Kn be the random polygon generated by a
uniform sample of n points from K. Then

Prob{n2/3V (K \Kn) → c1} = 1,

P rob{n−1/3f0(Kn) → c2} = 1,

where c1 and c2 are constants depending on K.

Reitzner [8] obtained similar statements for the case of
smooth convex bodies by appealing to Tchebycheff, the
Borel-Cantelli lemma, and an argument about conver-
gence of subsequences. We can prove it directly using
the complete convergence theorem of Hsu and Robbins
[5]

Theorem 2 is a direct consequence of a strengthened
version of the economic cap covering theorem of Bárány
and Bárány and Larman that holds in dimension 2, and
is of independent interest. Specifically we prove

Theorem 4 Let K ⊂ R2 be a convex body of area 1.
There are numbers T0 > 0 and q ∈ (0, 1) such that
for all T ∈ (0, T0] and for all t ∈ (0, qT ] the following
holds. For every cap D of K of area T and for every
cap covering C1, C2, . . . , Cm of K(v ≤ t),

V (K(v ≤ t)∩D) �
m∑

i=1

V (Ci∩D) � V (K(v ≤ t)∩D).

In the next section we will review cap covering and ex-
plain how Theorem 4 implies the truth of a conjecture of
Bárány and Reitzner [3] which already had been shown
to imply Theorem 2. Finally, in the remaining sections,
we will sketch the proof of Theorem 4 and thereby, of
Theorem 2.

2 Economic cap coverings

We fix the convex body K ⊂ Rd of volume one. A cap C
of K is the intersection of K with a closed halfspace H .
The centre of C is a point x ∈ C (not necessarily unique)
with maximal distance from the bounding hyperplane,
L, of H . The width of C, w(C), is just the distance
between x and L. For λ > 0 let Hλ be the halfspace
containing H for which the width of the cap Cλ = K ∩
Hλ is λ times the width of C. Observe that for λ ≥ 1,
Cλ ⊂ x + λ(C − x), implying that V (Cλ) ≤ λdV (C) if
λ ≥ 1.

The minimal cap of z ∈ K is a cap C(z) containing
z such that v(z) = V (C(z)). Again, it need not be
unique.

The Macbeath region, or M -region, for short, with
center z and factor λ > 0 is

M(z, λ) = MK(z, λ) = z + λ[(K − z) ∩ (z −K)].

The M -region with λ = 1 is just the intersection of
K and K reflected with respect to z. Thus M(z, 1)
is convex and centrally symmetric with cente z, and
M(z, λ) is a homothetic copy of M(z, 1) with center
z and factor of homothety λ. The following lemma,
originally from [4], is crucial.

Lemma 5 Suppose M(x, 1/2) ∩ M(y, 1/2) 6= ∅. Then
M(x, 1) ⊂ M(y, 5).

Set
t0 = (16d)−2d. (1)

The boundary of K(v ≥ t) is clearly K(v = t) . As-
sume t ≤ t0 and choose a maximal system of points
X = {x1, . . . , xm} on K(v = t) having pairwise disjoint
M -regions M(xi, 1/2). Such a system will be called
saturated. Note that X (and even m) is not defined
uniquely. Clearly V (C(xi)) = t. Set

Ki = M(xi, 1/2) ∩C(xi) and Ci = (C(xi))16.

We write [m] for {1, 2, . . . , m}. The following result, the
so called economic cap covering theorem, comes from
Theorem 6 in [2] and Theorem 7 in [1]. The present
form is copied here from [3].

Proposition 6 Suppose t ∈ (0, t0], K ⊂ Rd is a convex
body of volume one, and X = {x1, . . . , xm} is a satu-
rated system on K(v = t). Then, with Ci and Ki as
defined above, the following holds

(i)
⋃m

1 Ki ⊂ K(v ≤ t) ⊂ ⋃m
1 Ci,

(ii) t ≤ V (Ci) ≤ 16dt, for i ∈ [m],

(iii) (6d)−dt ≤ V (Ki) ≤ 2−dt, i ∈ [m],

(iv) every C with V (C) ≤ t is contained in some Ci

with i ∈ [m].

The sets C1, . . . , Cm from this construction will be
called an economic cap covering of K(v ≤ t).

The following conjecture was stated in [3].

Conjecture 7 For every d ≥ 2 there are numbers T0 >
0 and q ∈ (0, 1) such that for all convex bodies K ⊂
Rd of volume one, and for all T ∈ (0, T0], and for all
t ∈ (0, qT ] the following holds. Let D1, . . . , Dm(T ), resp.
C1, . . . , Cm(t) be the covering caps for K(v ≤ T ) and
K(v ≤ t) from Theorem 6. Then

m(T )∑
i=1

V (K(v ≤ t) ∩Di) �
m(T )∑
i=1

m(t)∑
j=1

V (Cj ∩Di)

�
m(T )∑
i=1

V (K(v ≤ t) ∩Di).
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It was proved in [3] that this conjecture would im-
ply the general upper bound, of the same order as in
the lower bounds in Theorem 1, on the variances of the
random variables V (K \ Kn) and f`(Kn). To see that
the conjecture is true for d = 2, simply apply the in-
equalities of Theorem 4 to each Di and sum the results.
The left hand side inequality is a direct consequence of
the cap covering theorem.

Theorem 4 is a strengthening, in dimension 2, of the
above conjecture. Unfortunately the theorem does not
remain true in higher dimensions. Suppose K ⊂ Rd

(d ≥ 3) is the truncated cone x2
1 + . . . x2

d−1 ≤ xd ≤
1. The cap D is cut off from K by the hyperplane
xd ≤ h for small h > 0 and the cap coverings of K(v ≤
t) go with small t > 0. A direct computation shows
that

∑m
1 V (Ci∩D) is not smaller than a constant times

V (K(v ≤ t) ∩D); we omit the details.
In the next section we prepare some facts needed for

the proof of Theorem 4, and then we sketch the proof.

3 Auxiliary Lemmas and Preparations

Since d = 2 we will use Area instead of V . We briefly
review some properties of the M -regions and minimal
caps. We assume that t ≤ t0 where t0 = 32−4, but
certainly t0 could be taken much larger. We make no
effort to minimize constants.

The floating body K(v ≥ t) is convex. It was shown
in [1] that its boundary K(v = t), contains no line seg-
ment. This implies that if C is a cap with Area C ≤ t0,
then max{v(x) : x ∈ C} is reached at a unique point
z ∈ C; actually, with v(z) = t, C ∩K(v ≥ t) = {z}. So
z lies on the bounding segment, [a, b] of C. The convex
curve K(v = t) has unique left and right tangents at
z that cut off caps Cleft and Cright from K. As was
shown in [1]

Lemma 8 t = Area Cleft = Area Cright and C ⊂
Cleft ∪Cright. In particular, t ≤ Area C ≤ 2t.

If the left and right tangents to K(v = t) at z coincide,
then C is the minimal cap of z, and z is the midpoint
of the bounding segment [a, b] of C.

Lemma 9 With the above notation |a− z| ≤ 2|b− z|.

The function u : K → R is defined by u(x) =
Area M(x, 1). Many things are known about u(x). In
particular it is shown in [2] that u(x) and v(x) are very
close to each other near the boundary of K:

Lemma 10 For every x ∈ K, u(x) ≤ 2v(x). If v(x) ≤
t0 or if u(x) ≤ t0, then v(x) ≤ 16u(x).

We place the coordinate system so that [b1, b2], the
bounding segment of D, lies on the x-axis, and the origin

b1

D

C

b2

c

y

a

ed1

e1
d

Figure 1: The caps D, C and the quadrilateral Q.

is the point where v(x) takes its maximal value on D
(see Figure 1). Lemma 8 shows that v(0) ≤ T ≤ 2v(0).

In the next statement, b denotes either b1 or b2.

Lemma 11 If a ∈ [0, b] and v(a) ≤ 2−65−2kT , then
|b− a| ≤ 3−k|b|.
To see this, observe that Area D = T ≤ 2v(0). Now fix
the constants T0 and q: T0 = t0 = 32−4 and suppose
from now on that T ≤ T0. There will be an intermediate
t∗ satisfying

t∗ = 29t and t∗ ≤ 2−65−4T (2)

so q = 2−155−4.
Next let C be a cap with bounding segment [c, d].

Denote by y the point on [c, d] where v(x) reaches its
maximal value on x ∈ C. Assume [c, d] intersects [b1, b2]
in a point a ∈ [0, b] where, again, b denotes either one
of the points b1 or b2. We use the notation of Figure
1 (where b = b2). The figure is distorted since Area C
should be much smaller than Area D. We write Q for
the quadrilateral with vertices a, b, e, d1.

Lemma 12 If |b| > 3|a− b|, Area Q � Area C ∩D ≤
Area Q.

Proof. The upper bound is trivial since C ∩ D ⊂ Q.
For the lower bound, let h(x) denote the distance of
x ∈ R2 from the x axis and let k be the smallest integer
with |b| ≤ 3k|b − a|. Then k ≥ 2 and |b| > 3k−1|a − b|.
Lemma 9 shows that |y − d| ≤ 2|y− c| implying h(d) ≤
2h(c), and |d− e1| ≤ 3|a− b|. Then |d− e1|/|b2 − b1| =
(h(e)− h(d))/h(e), implying

h(d)
h(e)

≥ 1− 3|a− b|
|b2 − b1| ≥ β,

where β = 1− 2 · 3−k+1 > 0; this follows from |a− b| <
3−k+1|b| and from |b2−b1| = |b2|+ |b1| ≥ |b|+ |b|/2 with
Lemma 9. Now we have

Area Q =

[(
h(e) + h(c)

h(c)

)2

− 1

]
Area [c, a, b2]
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=
h(e)
h(c)

(
h(e)
h(c)

+ 2
)

1
2
h(c)|a− b2|

=
h(e)
h(d)

(
h(e)
h(c)

+ 2
)

1
2
h(d)|a− b2|,

so Area Q ≤ (1/β)(2/β + 2)Area [a, b, d] ≤ (1/β)(2/β +
2)Area C ∩ D. Note that β is increasing with k and
β ≥ 1/3 for all k ≥ 2. Thus Area Q ≤ 24Area C ∩ D.

Remark. The lemma holds even if a = y, that is, when
v(x) reaches its maximal value on C at x = a. We will
use it in this form in Lemma 16.

4 The proof, first part

We define I0 = {i ∈ [m] : xi ∈ D}.

Lemma 13
∑

i∈I0
Area Ci ∩D � Area K(v ≤ t) ∩D.

Proof. We may take I0 6= ∅ or there is nothing to prove.
Using Area Ci ≤ 2t from Lemma 8,

∑
i∈I0

Area Ci ∩
D ≤ ∑

i∈I0
Area Ci ≤ 2t|I0| �

∑
i∈I0

Area M(xi, 1/2)
where the last inequality holds since I0 6= ∅ and
since Area M(xi, 1/2) = 1

4u(xi) ≤ 1
64v(xi) = t/2

by Lemma 10. Further,
∑

i∈I0
Area M(xi, 1/2) =

2
∑

i∈I0
Area Ki.

It is easy to show the following:

Claim 14 When i ∈ I0, Ki ⊂ K(v ≤ t) ∩ D except
possibly for the leftmost and rightmost Ki.

Using now Area K(v ≤ t) ∩ D ≥ t we have∑
i∈I0

Area Ki ≤ Area K(v ≤ t)∩D+2t � Area K(v ≤
t) ∩D.

Remark. This argument actually holds in any dimen-
sion.

For each xi /∈ D we define the cap C∗
i whose bounding

segment is parallel with that of Ci so that C∗
i ∩K(v ≥

t∗) is a single point yi. Here t∗ is given by 29t = t∗,
according to (2). We claim that Ci ⊂ C∗

i for every i ∈
[m] \ I0. Indeed, Area Ci ≤ 162t because Ci = C(xi)16.
So even if Ci is not a minimal cap, it is disjoint from
K(v ≥ t∗) as shown by Lemma 8. It is also clear that
Area C∗

i � t. We are going to show that∑
i∈[m]\I0

Area C∗
i ∩D � t, (3)

which will finish the proof since Ci ⊂ C∗
i .

Remark. This inequality does not hold for the example
given at the end of Section 2.

Define I1 = {i ∈ [m] : xi /∈ D and yi ∈ D} and
I = [m] \ (I0 ∩ I1). We will show that the contribution
of the terms Area C∗

i ∩D with i ∈ I1 is not too large.

Lemma 15
∑

i∈I1
Area (C∗

i ∩D) � t.

This proof is simpler than the previous one. The
wet part K(v ≤ t∗) intersects [b1, b2] in two segments.
Consider one of them, [a, b2] say. Let I∗ be the set
of those i ∈ I1 for which the bounding segment of Ci

intersects [a, b2]. By symmetry it is enough to show that∑
i∈I∗ Area C∗

j ∩D � t.
Let j ∈ I∗ be the element for which h(yj) is smallest.

Then all other xi with i ∈ I∗ lie in C∗
j \D ⊂ C∗

j , and the
corresponding Ki are pairwise disjoint, and all of them
(except possibly the leftmost) are contained in C∗

j , and
Kj ⊂ C∗

j , of course. Thus |I∗| � 1
t Area C∗

j + 1 � 1
and this implies the lemma since Area C∗

i � t.
The final steps in the proof of Theorem 4 bound∑
i∈I Area C∗

i ∩ D,; I = [m] \ (I0 ∩ I1). This is more
difficult, and for reasons of space, we have to postpone
these arguments for the full paper.
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