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Constrained k-center and Movement to Independence

Adrian Dumitrescu*

Abstract

We obtain hardness results and approximation algo-
rithms for two related geometric problems involving
movement. The first is a constrained variant of the k-
center problem, arising from a geometric client-server
problem. The second is the problem of moving points
towards an independent set.!

1 Introduction

Given a set S of n points in the plane, the k-center
problem is to find k£ congruent disks of minimum ra-
dius r that cover S. We study the following constrained
variant of the k-center problem:

CONSTRAINED k-CENTER

Instance: A set P = {p1,...,pn} of n black points and
aset Q@ = {q1,...,qx} of k red points in the plane.
P and @ are not necessarily disjoint.

Problem: Find aset D = {D;,..., Dy} of k disks con-
strained to the set Q@ = {q1,...,qx} of k red points
(that is, for 1 < j < k, the disk D; contains the
corresponding red point ¢;) such that all points in
P are covered by the union of the disks in D, and
the maximum radius of the disks in D is minimized.

The problem CONSTRAINED k-CENTER is the geomet-
ric version of a movement problem originally proposed
by Demaine et al. [2] in the graph-theoretical setting:
Given a connected graph G in which some vertices are
occupied by clients and some vertices are occupied by
servers, the problem FACILITY-LOCATION MOVEMENT
is that of moving both the clients and the servers in the
graph until each client occupies the same vertex as some
server, such that the maximum movement of a client
or a server is minimized; here the distance is the path
length in the graph. The authors [2] observed that a 2-
approximation can be achieved simply by keeping each
server at its original location and moving each client
to its nearest server. Friggstad and Salavatipour [5]
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showed that this simple 2-approximation is in fact best
possible: Unless P = NP, FACILITY-LOCATION MOVE-
MENT is NP-hard to approximate within 2 — ¢ for any
constant € > 0.

Here we focus on the geometric version, where the
clients and servers are points in the Euclidean plane (or
more generally, in R?), and the movement is measured
as the Euclidean distance, rather than the number of
edges of a path in the graph. The task is to determine a
movement of the clients and servers, so that in the end,
each client coincides with some server, and the maxi-
mum movement is minimized.

Let P be the set of clients, and @ be the set of
servers, where |P| = n and |Q| = k. Usually k is much
smaller than n. Let us first observe that our CON-
STRAINED k-CENTER problem is essentially the same
as the FACILITY-LOCATION MOVEMENT problem. In-
deed, consider an optimal solution to the FACILITY-
LOCATION MOVEMENT problem with maximum move-
ment A\. Then the disks of radius A centered at the
server locations after the movement cover all clients
and servers at their original locations. Conversely, con-
sider a set of disks, say of radius A, in an optimal so-
lution to CONSTRAINED k-CENTER. Then moving the
clients and the server contained in each disk (with ties
broken arbitrarily) to its center, gives a solution to
the FACILITY-LOCATION MOVEMENT problem with the
maximum movement at most .

The afore-mentioned 2-approximation works in this
setting as follows. Let d denote the maximum black-
red (client-server) distance obtained by assigning each
black point to its closest red point. Let OPT denote an
optimal solution and ALG denote the solution returned
by the algorithm. Then clearly

OPT > g, and ALG = d, (1)

and the ratio 2 immediately follows. It is worth observ-
ing that the algorithm which keeps fixed each red point
achieves ratio 2 even on the line: place two red points at
0 and 2+¢, and two black points at 14+¢ and 3+¢. Then
OPT = (1 + ¢)/2, while ALG = 1 (this tight example
can be easily extended for a larger number of points).

We first show that the approximation lower bound for
the problem remains close to 2 already for the planar
variant.

Theorem 1 CONSTRAINED k-CENTER in the plane is
NP-hard to approximate within 1.8279.
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On the other hand, we have the following positive
result showing that constant approximations for CON-
STRAINED k-CENTER can be obtained by a fixed param-
eter tractable algorithm [6] with k as the parameter.

Theorem 2 For any given € > 0, there exists a (1+¢)-
approzimation algorithm for CONSTRAINED k-CENTER
in the plane that runs in O(e=2* - n) time. Moreover,
there exist: a 1.87-approximation algorithm that runs
in O(3%k-n) time, a 1.71-approximation algorithm that
runs in O(4%k-n) time, and a 1.61-approzimation algo-
rithm that runs in O(5%k - n) time.

In the second part of the paper, we study another
movement problem proposed by Demaine et al. [2]:

MOVEMENT TO INDEPENDENCE

Instance: A set P = {p1,...,pn} of n points in RY,
and a threshold distance A.

Problem: Find a set Q = {q1,...,¢,} of n (target)
points in R?, one point ¢; € @ for each point
p; € P, such that the minimum pairwise distance
min; ; |¢;q;| among the points in @ is at least A,
and that the maximum movement max; |p;g;| from
any point p; € P to the corresponding target point
¢; € @ is minimized.

There is a natural connection between MOVEMENT
TO INDEPENDENCE and the dispersion problem in a
set of congruent disks. The problem of dispersion in
a given set of disks is that of selecting n points, one in
each disk, such that the minimum inter-point distance
is maximized.

DISPERSION IN CONGRUENT DISKS

Instance: A set {Di,..., Dy} of n congruent disks.

Problem: Find a set @ = {¢1,...,9,} of n points,
one point ¢; € @ in each disk D;, such that the
minimum pairwise distance min; ; |g;¢;| among the
points in @ is maximized.

The dispersion problem was introduced by Fiala
et al. [4] in a more general setting as “systems of distant
representatives”, generalizing the classic problem “sys-
tems of distinct representatives”. See also [1]. Fiala
et al. [4] showed that dispersion in unit disks is NP-
hard. As a corollary we obtain

Theorem 3 MOVEMENT TO INDEPENDENCE in the
plane (and in higher dimensions) is NP-hard.

Let P = {p1,...,pn} be a set of n points in R?. De-
note by OPT(z) the minimum maximum movement for
the instance (P, z) of the problem MOVEMENT TO IN-
DEPENDENCE in R? (that is, the value of the optimal

solution to this instance). Demaine et al. [2] presented
a polynomial-time algorithm for MOVEMENT TO INDE-
PENDENCE on an instance (P, 1) with maximum move-
ment at most OPT(1) +1+ % Their algorithm moves
the points to the grid points of an equilateral trian-
gular lattice of unit side. By a scaling argument, this
algorithm can be turned into an algorithm for (P,x)
for any z > 0, with maximum movement at most
OPT(z) + (1 + %)x We have the following comple-
mentary result:

Theorem 4 There exists a polynomial-time approxi-
mation algorithm for MOVEMENT TO INDEPENDENCE
in the plane that moves any given set P of n points in
R? to another set Q of n points in R2, with a mazimum
movement no more than the minimum mazimum move-
ment necessary for a threshold distance of 1, and such
that the minimum pairwise distance among the points

: . _ 1 _
n Q is at least ¢ = W—O.QZL....

2 The Two Problems on the Line and on a Closed
Curve

As a warm-up exercise, we first study the two problems
CONSTRAINED Kk-CENTER and MOVEMENT TO INDE-
PENDENCE on the line and on a closed curve. The dis-
tance between two points on a closed curve is the length
of the shorter subcurve determined by the two points.
In these two settings, both problems can be solved ex-
actly in polynomial time.

Proposition 1 There exists an exact algorithm run-
ning in O((n + k)log(n + k)) time for CONSTRAINED
k-CENTER. on the line.

Proposition 2 There exists an exact algorithm run-
ning in O((n+k)?*log(n+k)) time for CONSTRAINED
k-CENTER on a closed curve.

Proposition 3 There ezists a polynomial-time exact
algorithm based on linear-programming for MOVEMENT
TO INDEPENDENCE on the line.

While MOVEMENT TO INDEPENDENCE on the line is
always feasible, this is not the case for the new variant
on a closed curve. Let v be a closed curve of length
L = |y|. Obviously, MOVEMENT TO INDEPENDENCE on
~v admits a solution if and only if L > nA. We show
next that an exact solution can still be found via linear-
programming.

Proposition 4 There exists a polynomial-time exact
algorithm based on linear-programming for MOVEMENT
TO INDEPENDENCE on a closed curve.
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3 NP-hardness of Constrained k-center

Proof of Theorem 1. We show that CONSTRAINED k-
CENTER is NP-hard by a reduction from the NP-hard
problem PLANAR-3SAT [7]. A reduction for k-center
based on similar ideas, however from another problem
PLANAR-VERTEX-COVER, appears in [3]. Let (V,C, G)
be a PLANAR-3SAT instance, which consists of a set
V of n boolean variables, a set C' of m clauses that are
disjunctions of three literals, and a planar embedding G
of the bipartite graph with a vertex for each variable and
each clause, and with an edge connecting a variable to a
clause if and only if a literal of the variable occurs in the
clause. We will construct a CONSTRAINED k-CENTER
instance consisting of a gadget for each variable, clause,
and literal.

literal

Figure 1: Connection between three literals in a clause.
The three red points a,b,c (drawn as empty circles) come
from three different literals, and are placed at the vertices of
an equilateral triangle inscribed in a circle centered at the
shared black point o; |oa| = |ob| = |oc| = 2. The black point
o in the clause gadget is covered only if at least one of the
three literals is true. In this example, the literal of ¢ is true,
and the literals of a and b are false.

We now describe our construction. The gadget for
each clause is a single black point. The gadget for each
variable is a closed chain of alternating black and red
points. The gadget for each literal is an open chain of
alternating black and red points, with a black point at
one end and a red point at the other end. The clause and
variable gadgets model the vertices of the planar graph.
The literal gadgets model the edges: each literal gadget
is connected to the corresponding clause gadget at the
end with a red point, and to the corresponding variable
gadget at the end with a black point. We illustrate in
Figure 1 the connection between the gadgets of a clause
and its three literals, and in Figure 2 the connection
between the gadgets of a literal and its variable. The
distance between consecutive black and red points in
each variable or clause gadget is exactly 2 (which is the
diameter of unit-radius disk) except at the junctions
where a literal gadget is connected to a variable gadget
(between ¢ and e in Figure 2).

positive literal

negative literal

variable

Figure 2: Connection between a variable and its literals.
The four points d,c, e, f are part of a variable gadget; the
two points a,b are part of a literal gadget; a,b,c,d are
collinear; b,c,e are on a circle of unit radius; ef L ad;
jabl = [cd| = lef| = 2, lac| = [bd] = [bf] = lcf|. Red
points are drawn as small empty circles. Large solid and
dotted circles (of unit radius) correspond to true and false
assignments, respectively.

Write @ = |bc|/2 for the configuration in Figure 2.
Then |ac| = |bd| = 2 + 2z, and

2
bf| = |ef| = \/(\/1 — 22 +3) + a2,
Let x be the solution to the equation
2
24 20 = \/(\/1—3:2—0—3) + a2,

and let y = 1+ x. Then |ac| = |bd| = |bf| = |cf| = 2y,
and y is the solution to the following quartic equation

4yt —11y* — 18y + 25 = 0.

A calculation shows that y = 1.8279.... Assume that
1 < r < y in the following. It is easy to check that for
any such r, a disk of radius r that contains a red point
can contain at most one black point in our construction,
except at the junction between each literal and its vari-
able, where a disk may contain the red point e and the
two black points b and ¢ as in Figure 2. Now set the
parameter k to the number of red points in the construc-
tion. Then the PLANAR-3SAT formula is satisfiable if
and only if the CONSTRAINED k-CENTER instance has
a feasible solution with k disks of radius r. The slack-
ness in the disk radius r implies that CONSTRAINED
k-CENTER is NP-hard to approximate within y — & for
any constant € > 0. O
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4 Approximation for Constrained k-center

Proof of Theorem 2. The idea of our approxima-
tion algorithm is very simple, namely to enumerate the
approximate positions of an optimal constrained disk
cover. Fix an optimal solution O = {Qy,...,Q}. Sup-
pose that the red point g; is covered by a disk §2; of
radius r* in the solution O. Then the center c; of €); is
contained in a disk D; of radius r* centered at g;.

It is well-known that a disk of radius 1 can be covered
by three smaller disks of radii @, whose centers form
an equilateral triangle, as shown in Figure 3. Now place
three points around the red point ¢; in an equilateral
triangle formation (in some arbitrary orientation) such
that the distance from g; to each point is %r*. Hence the

disk D; is covered by three smaller disks, Fj1, Ej2, Ej3
of radius @r* centered at the three points. Recall that
c; is contained in Dj, so it is covered by one of the disks
Ejl,EjQ,Ejg. Let Fjl D Ejl, sz D Ejg, Fjg D Ejg, be
three larger concentric disks of radius (@ +1)r*. Since
Q; has radius r*, it is covered by one of the larger disks
F1, Fj, Fj3 of radius (‘/7§ + 1)r*. So all black points
covered by ); are also covered by one of these three
larger disks.

Figure 3: Covering a disk of radius 1 by three smaller disks
of radius v/3/2. The three sides of the equilateral triangle
inscribed in the unit-radius disk are the diameters of the
three smaller disks. The distance from the center of the
unit-radius disk to the center of each smaller disk is 1/2.

By the preceding observation, given any candidate
radius r, we can either find a feasible solution of k disks
of radii (@ + 1)r by enumerating one of three possible
disks for each red point and testing the black points for
containment, all in O(3*k-n) time, or decide (correctly)
that there is no feasible solution with radius r. By (1),
we can find a radius 7 such that 1r* <7 < 7* in O(kn)
time. Then, by a binary search in the range [F, 27|, we
can obtain a (@ +1+¢)-approximation in O(3%k-log L -
n) time, which is linear in n for any constants k and e.
In particular, since @ +1=1.8660..., we have a 1.87-
approximation algorithm that runs in O(3¥k - n) time.

Finer approximations are obtained by covering the

unit disk a larger number of smaller congruent disks.
The details are omitted. O

5 Approximation for Movement to Independence

Proof of Theorem 4. Let § be the minimum pairwise
distance min; ; |p;p;| of the points in P. We claim that
if 6 <z <1, then

OPT(1) > OPT(z) + (1 — ) /2.

To see that the claim is true, imagine all points move
from start configuration to target configuration with the
same speed as in an optimal solution for OPT(1). Pause
the points as soon as their minimum pairwise distance
is z. Then the movement is at least OPT(z) before the
pause and at least (1 — z)/2 after the pause.

Let ¢ = m =0.24.... We now give an algorithm

that moves the points to minimum pairwise distance
at least ¢ using maximum movement at most OPT(1).
Consider two cases:

(1) § > ¢ Stay put.

(2) § < ¢ Use the algorithm of Demaine et al. [2] with
a smaller grid of size + = ¢. Then the maximum
movement is at most

1

OPT(c) + <1 + —> c<opr(1)— L=9

2

+ <1+%> c=OPT(1). 0

B

References

[1] S. Cabello: Approximation algorithms for spread-
ing points, Journal of Algorithms, 62 (2007), 49—
73.

[2] E. D. Demaine, M. Hajiaghayi, H. Mahini, A. S.
Sayedi-Roshkhar, S. Oveisgharan, and M. Zadi-
moghaddam, Minimizing movement, ACM Trans-
actions on Algorithms, 5 (2009), article 30.

[3] T. Feder and D. H. Greene, Optimal algorithms for
approximate clustering, Proc. 20th ACM Sympos.
on Theory of Computing, 1988, pp. 434—444.

[4] J. Fiala, J. Kratochvil, and A. Proskurowski, Sys-
tems of distant representatives, Discrete Applied
Mathematics, 145 (2005), 306-316.

[5] Z. Friggstad and M. R. Salavatipour, Minimizing
movement in mobile facility location problems, in
Proc. 49th IEEE Sympos. on Foundations of Com-
puter Science, 2009, pp. 357-366.

[6] P. Giannopoulos, C. Knauer, and S. Whitesides,
Parameterized complexity of geometric problems,
Computer Journal, 51(3) (2008), 372-384.

[7] D. Lichtenstein, Planar formulae and their uses,
SIAM Journal on Computing, 11 (1982), 329-343.



