
CCCG 2010, Winnipeg MB, August 9–11, 2010

Computing Minimum Limited-Capacity Matching in one-Dimensional space
and for the Points Lying on Two Perpendicular Lines

Fatemeh Panahi∗ Ali Mohades†

Abstract

Let A = {a1, a2, ..., as}, and B = {b1, b2, ..., br} be
two sets of points such that s + r = n. Also let
CA = {α1, α2, ..., αs} and CB = {β1, β2, ..., βr} be the
capacities of points in A and B. We define minimum
limited capacity matching and call it MLC-matching
that matches each point ai ∈ A to at least one and
at most αi points in B and matches each bj ∈ B to
at least one and at most βj points in A, for all i,j
where 1 ≤ i ≤ s , 1 ≤ j ≤ r, such that sum of
all the matching costs is minimized. Cost of match-
ing ai ∈ A to bj ∈ B is equal to the distance be-
tween ai and bj . In one-dimensional space, we present
an O(kn2) algorithm to compute MLC-matching, where
k = min{max(αi, βj), n}, which also works when points
of A and B lie on two parallel lines and also on two
unparallel lines, on one side of the cross point. We im-
proved the algorithm to O(nlogn) for the points lying
on two perpendicular lines.

1 Introduction

Point matching is a practical method to determine and
measure the relation between two sets. A matching be-
tween two sets maps individual points in one set with
individual points in the other one [1]. It has various ap-
plications in many fields such as computer vision, pat-
tern recognition, music information retrieval, and phi-
losophy of science to name a few.

There are different types of point matching problems,
depending on the application they are raised from. In
point set pattern matching (PSPM), the problem is de-
termining the similarity of two point sets which repre-
sent two different objects, under different transforma-
tions such as translation, and rigid motion or congru-
ence [2]. Generally, the resemblance of two point sets
is expressed by the distance between them. Eiter and
Mannila reviewed some of distance measures including
Hausdorff distance, sum of minimum distances, surjec-
tion distance, and fair surjection distance [3]. All of

∗Laboratory of Algorithms and Computational Geometry, De-
partment of Mathematics and Computer Science, Amirkabir Uni-
versity of Technology, Tehran, Iran fatemehpanahi@aut.ac.ir

†Laboratory of Algorithms and Computational Geometry, De-
partment of Mathematics and Computer Science, Amirkabir Uni-
versity of technology, Tehran, Iran mohades@aut.ac.ir

them were computed in polynomial times. They also
proposed a distance measure called link distance. A
linking between two sets A and B is a set of matched
pair, L, which maps all elements of A with at least an
element in B and vice-versa. The link distance is sum
of the distances between each two points in L. The link
distance has been first described as a measure of similar-
ity between two theories in a logical language and com-
puted in O(n3) time. Colannino and Toussaint proposed
an O(n2) algorithm for computing the link distance in
one dimensional space [4]. In another work, Colannino
et al. improved the O(n2) algorithm to an O(nlogn)
one and called it many-to-many matching [1]. One-to-
one matching is a perfect matching, which matches each
point in one set exactly with one point in the other set
[5].

The assignment problem, which is one of the funda-
mental combinatorial optimization problems, aims at
finding the minimum perfect matching in two point sets.
The two point sets represent agents or server centers and
tasks or client centers, while matches represent assign-
ments. Any task can be assigned to any agent, and
each task-agent assignment has a specific cost. The
problem is to assign exactly one agent to each task
to perform all tasks such that the total cost of the as-
signment is minimized. The Hungarian algorithm is a
well known algorithm that solves the minimum perfect
matching in O(n3) time where n is the total number
of input points [5]. Besides the advantages of one to
one matching, in some applications like management,
industrial sciences and transition networks, it is desired
to assign each center to multiple ones. When it is re-
quired to map each center with at least one center in
the other set, the algorithm of computing minimum
many-to-many matching could be useful. To prevent
mapping the points to a large number of points in the
other set, it is required to impose some restrictions.
In this paper, we consider the case that the capaci-
ties of the points are limited, and therefore the num-
ber of matches to each point should be limited. Let
A = {a1, a2, ..., as} and B = {b1, b2, ..., br} be two sets
of points such that s+ r = n. CA = {α1, α2, ..., αs} and
CB = {β1, β2, ..., βr} are the capacities of points in A
and B respectively. We define minimum limited capac-
ity MLC − matching that matches each point ai ∈ A
to at least one and at most αi points in B and matches

22nd Canadian Conference on Computational Geometry, 2010

each bj ∈ B to at least one and at most βj points in A,
for all i, j where 1 ≤ i ≤ s and 1 ≤ j ≤ r, such that sum
of the all matching costs is minimized. Cost of matching
ai ∈ A to bj ∈ B is equal to the distance between ai and
bj . Generally, the distance between the centers is the
Euclidian distance in 2D space. In some production line
models, the resources and the client centers are located
on one line or two separated lines.
For the general case MLC-matching can be computed
in O(n3) by phrasing the problem as a network-flow
problem and computing a minimum cost flow. In this
work, we present an O(kn2) algorithm, where k =
min{max(αi, βj), n} for computing MLC − matching
problem in one-dimensional space. We improved the al-
gorithm to O(nlogn) for the case that the points of two
sets lie on two perpendicular lines.

If a node matches to the maximum number of points
which could be matched, i.e. its capacity, we call it a
full node. If a node matches to exactly one point, it is
referred to as a single-matched node.

We start with some properties of this matching.

2 Algorithms

The matching between A and B is a set of matched
pairs (a, b) where a ∈ A and b ∈ B. Limited capacity
matching is defined on two point sets A = {a1, a2, ..., as}
and B = {b1, b2, ..., br} which have the capacity sets
CA = {α1, α2, ..., αs} and CB = β1, β2, ..., βr, respec-
tively. In limited capacity matching, each point ai ∈ A
is matched to at least one and at most ai points in B
and each bj ∈ B to at least one and at most j points
in A, for all i,j where 1 ≤ i ≤ s and 1 ≤ j ≤ r. Cost
of matching ai ∈ A to bj ∈ B is equal to the distance
between ai and bj . MCL-matching is a limited capacity
matching in which the sum of the all matching costs is
minimized.

If a node matches to the maximum number of points
which could be matched, i.e. its capacity, we call it a
full node. If a node matches to exactly one point, it
is referred to as a single-matched node. We start with
some properties of this matching.

Observation 1 The graph constructed from MLC-
matching, with the matched pairs as edges and the points
as nodes, is a set of trees in which there exists at most
one node with degree of more than one.

Observation 2 For each four nodes ai, aj′ ∈ A and
bj, bj′ ∈ B, if
distance(ai, bj)+distance(ai′ , bj′) < distance(ai, bj′)+
distance(ai′ , bj),
then both (ai, bj′) and (ai′ , bj) could not be in MLC-
matching.

2.1 The Algorithm for one-dimensional space

Assume that A = {a1, a2, .., ar} and B = {b1, b2, .., bs}
lie on the real line, and CA = {α1, α2, ..., αr} and CB =
{β1, β2, ..., βs} are their capacities. We can suppose that
the points lie on the x− axis and are sorted in ascending
order of their x−coordinates. We present a recursive
algorithm to find a MLC-matching for A and B.

Lemma 1 The matched pair (ar, bs) exists in a MLC-
matching.

Proof. Suppose that the lemma is false. Let M be a
MLC-matching that does not contain (ar, bs). ar should
be matched to some node like bk, where k < s. In
this case, according to observation 2, br could not be
matched to any of nodes, a contradiction. �

Lemma 2 If ai is matched to nodes, bk and bk′ (k <
k′), in a MLC-matching, then it is matched to all bj for
each k < j < k′.

Proof. It is clear according to observation 2. �

Let S(i, j) be the function which computes the cost of
MLC-matching for two sets, A = {a1, a2, .., ai} and B =
{b1, b2, .., bj}, and their capacities, CA = {α1, α2, ..., αi}
and CB = {β1, β2, ..., βj}. Considering lemma 2, (ai, bj)
is in the MLC-matching. For convenience of presenta-
tion the points in figure 1 are shown on the separated
lines.

Figure 1: The Possible cases for matched nodes to ai in
MLC-matching

The possible cases for ai in MLC-matching are as fol-
low:

• ai is matched to bj and they are not mapped
to any other nodes. In this case, MLC-matching
contains (ai, bj) and all matched pairs in A =
{a1, a2, .., ai−1} and B = {b1, b2, .., bj−1} (figure
1(a)).

• ai is matched just to bj and bj−1, while bj and bj−1

are not mapped to any other node (figure 1(b)),

CCCG 2010, Winnipeg MB, August 9–11, 2010

• ai matches to three nodes, bj , bj−1, and bj−2 (figure
1(c)),

•

• ai is full and matches to αi nodes.

There are similar cases for bj .
With regards to the above cases, we can define the

function S recursively as,

S(i, j) = Min{|aibj |+S(i−1, j−1), |aibj |+|ai−1bj |+
S(i−2, j−1), ...,Σβj

m=0|ai−mbj |+S(i−βj , j−1), |aibj |+
|aibj−1|+S(i− 1, j− 2), ...,Σαi

m=0|aibj−m|+S(i− 1, j−
αi)}.

To compute the value of S, dynamic programming
can be used. All cases of S(i, j) are O(n2) and
each of which need at most O(k) time where k =
max1≤i≤r,1≤j≤s(αi, βj). Totally, the algorithm can be
run in O(kn2) time where k can be fixed as a con-
stant. Theorem 3 shows this result. Since this prob-
lem is enough significant in application, improving this
algorithm using more complicated data structures and
algorithms has considered as a future work. One of the
advantages of the proposed algorithm is that it can be
applied in the cases that points lie on two parallel lines
and also on two unparallel lines, on one side of the cross
point, which has applications in some production line
models.

Theorem 3 Let A and B be two sets of points
in one-dimensional space. The MLC-Matching of
the sets can be computed in O(kn2), where k =
min{max(αi, βj), n}. Such an algorithm can be applied
in the cases that points lie on two parallel lines and also
on two unparallel lines, on one side of the cross point,
which has applications in some production line models.

2.2 The Algorithm for the Points Lying on two Per-
pendicular Lines

In this section, we consider the case that A =
{a1, a2, .., ar} and B = {b1, b2, .., bs} lie on two perpen-
dicular lines, L1 and L2, which cross each other in the
point O, for example the x− and y−axes. Suppose that
s ≤ r and the elements of A and B are sorted in ascend-
ing order of their distance from O.

Lemma 4 For each i, i′ where |aiO| < |ai′O|, if ai and
ai′ are matched to bj and bj′ , respectively, then |bjO| <
|bj′O|.

Proof. Suppose that the lemma is not true. Let M be a
MLC-matching including the pairs (ai, bj) and (ai′ , bj′)
where |aiO| < |ai′O| and |bjO| > |bj′O|. The nodes ai

and ai′ , also bj and bj′ , can lie on two opposite sides

of the cross point O, or on the same side of it. The
following cases may take place:

• both ai , ai′ and bj , bj′ are on the same side of
the cross point O (figure 2(a)). Since |aiO| < |aO|
and |bjO| > |bj′O|, (ai, bj) and (ai′ , bj′), will cross
each other. According to proposition 2 and the
triangular inequality, it contradicts the assumption
that the matching is optimum.

• ai , ai′ are on two opposite sides and bj , bj′ are
on the same side of the cross point O (figure 2(b)).
Consider the mirror image of ai or ai′ with respect
to O on L1. In figure 2(b) the mirror image of ai′ ,
M(ai′), is demonstrated. As |ai′bj′ | = |M(ai′)bj′ |,
we can consider M(ai′) instead of ai′). (ai, bj) and
(M(ai′), bi′) cross each other and this contradicts
proposition 2.

• bj , bj′ are on two opposite sides and ai , ai′ are
on the same side of the cross point O. this case is
similar to the previous one.

• Both ai, ai′ and bj , bj′ are on two opposite sides of
O (figure 2(c)). Consider the mirror image of ai or
ai′ with respect to O on L1 and the mirror image
of of bj or bj′ with respect to O on L2. The sym-
metries of ai and bj , M(ai) and M(bj), are shown
in figure 2(c). We can consider M(ai) and M(bj)
instead of ai and bj . (ai′ , bj′) and (M(ai),M(bj))
cross each other and this contradicts proposition 2.

�

It is observed that the value of a solution does not
change if we replace a point at (x, 0) with x < 0 by the
point (−x, 0). Similarly we can remove all negative y-
coordinates. So without loss of generality we can assume
that all points lie on the positive x− and y−axes.

Figure 2: The possible cases for nodes ai ,ai′ , bj , and
bj′ with respect to the cross point O

Lemma 5 In MLC-matching all points of A, i.e. the
larger set, are single-matched.

22nd Canadian Conference on Computational Geometry, 2010

Proof. Assume that the lemma is not true and there
is a point like ai ∈ A which is matched to bj and bk

(k < l). In this case, we claim that all points of B
should be single-matched. Assume that there is a point
bj ∈ B which is not single-matched and matches to ax

and ay : If j < k (figure 4(a)), remove the pairs (ai, bk)
and (ay, bj) and add (ay, bk), If j > k (figure 4(b)), re-
move the pairs (ai, bl) and (ax, bj) and add (ax, bl), The
resulted matching is still a limited capacity matching
and has a smaller cost. There is a point in A matching
to more than one point and all points of B are single-
matched. It is in contradiction with the assumption
that A is the larger set. �

Figure 3: The position of bj with respect to bl and bk

Lemma 6 If ai is not a single-matched point, then all
points which are closer than ai to O, will be full.

Figure 4 illustrates an example of a MLC-matching. It
is observed that all points closer than b3 to O are full
and all points farther than b3 to O are single-matched.

Figure 4: MLC-matching for A = {a1, a2, ..., a9}
anb B = {b1, b2, .., b5} and their capacities CA =
{1, 3, 2, 4, 2, 1, 3, 3, 2} and CB = {3, 2, 3, 4, 3}.

There is a point bk such that b1, b2,..,bk−1 are full
and bk+1, b(k + 2),..,bs are single-matched. There are
s − k single-matched points in B, which are matched
to s − k end points of A. The number of points in A

matched to full nodes in B is Σk−1
j=1βj . The remaining

points of A, are matched to bk.

Therefore, s− k + Σk−1
j=1βj < r , s− k + Σk−1

j=1βj ≥ r

Indeed, k is the greatest integer number that s− k +
Σk−1

j=1βj < r.
By computing amount of k it is clear what the solu-

tion is. Theorem 7 shows the result.

Theorem 7 Let A and B be two sets of points lying on
two perpendicular lines. The MLC-matching of the sets
can be computed in O(nlogn) which is the time required
for sorting points. The next steps of the algorithm are
run in O(n). Therefore, MLC-matching of sorted points
can be computed in O(n) time.

3 Conclusion

In this paper, we studied a variant of point matching
problem, called MLC-matching, in which each point has
a limited capacity. Such a limitation is practically no-
ticeable where the points represent server-client centers
while matches represent assignments. The various cen-
ters have different capacities to map to each other. In
this paper, the problem was studied from a geometrical
view point for the first time. Regarding real word issues,
the distance between centers is considered Euclidian dis-
tance in one and two dimensional space. We stated the
Euclidian distance for computing MLC-matching and in
one-dimensional space, presented an O(kn2) algorithm,
where k = min{max(αi, βj), n}. Also, we improved the
algorithm to O(nlogn) for the points lying on two per-
pendicular lines.

References

[1] J. Colannino, M. Damian, F. Hurtado, S. Langerman,
H. Meijer, S. Ramaswami, D. Souvaine, and G. Tou-
ssaint Efficient many-to-many point matching in one
dimension. Graphs and Combinatorics, vol. 23, pp. 169-
178, 2007.

[2] A. Bishnu, S. Das, S. C. Nandy, and B. B. Bhat-
tacharya, Simple algorithms for partial point set pat-
tern matching under rigid motion Pattern Recognition,
vol. 39, pp. 1662-1671, 2006.

[3] T. Eiter and H. Mannila Distance measures for point
sets and their computation Acta Informatica, vol. 34,
pp. 109-133, 1997.

[4] J. Colannino and G. Toussaint A faster algorithm for
computing the link distance between two point sets on
the real line Citeseer 2005.

[5] R. M. Karp and S. Y. R. Li Two special cases of the
assignment problem Discrete Mathematics, vol. 13, pp.
129-142, 1975.

[6] L. R. Foulds Combinatorial optimization for undergrad-
uates Springer Verlag, 1984

