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Abstract

In this paper we consider a natural extension of the so-
called reverse facility location problem which was intro-
duced by Cabello et al. [3]. Given a set of n users and
a set of m facilities, where a user takes service from its
nearest facility, the objective is to place two new facili-
ties such that the total number of users served by these
two new facilities is maximized. We refer to this prob-
lem as the 2-MaxCov problem. In the L1 and L∞ met-
rics, the worst case time and space complexities of our
proposed algorithm for solving this problem are both
O(n2 log n). In the L2 metric, we propose an algorithm
for solving the problem in O(n log n) time, if m = 1.
We have also considered the obnoxious version of this
problem, referred to as the 2-Farthest-MaxCov problem,
where a user is served by its farthest facility. Our pro-
posed algorithm for this problem runs in O(n log n) time
for all the considered distance measures.

1 Introduction

The main objective in any facility location problem is
to judiciously place a set of facilities, serving a set of
users, such that certain optimality criterion is satisfied.
Facilities and users are generally modeled as points in
the plane. A facility can be attractive, like hospitals,
schools, and supermarkets; or obnoxious, like garbage
dumps and chemical plants. On the other hand, the
set of users is either discrete, consisting of finitely many
points, or continuous, that is, a region where every point
is considered to be a user. Given that the facilities are
equally equipped in all respects, a user always avails the
service from its nearest facility. Consequently, each fa-
cility has its service zone, consisting of the set of users
that are served by it. For a set U of users, finite or in-
finite, and a set F of facilities, define for every f ∈ F ,
U(f,F) as the set of users in U that are served by the
facility f among the facilities in F . Many variations of
facility location problem in both the discrete and con-
tinuous user category, under several optimality criteria,
have been studied [6]. Maximizing the cardinality or
area of the service zone is one such criteria.

For continuous demand region, Dehne et al. [5] ad-
dressed the problem of locating a new facility q amidst a
set F of n existing facilities, such that the area of the re-
gion served by q is maximized. The problem reduces to
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placing a new point q amidst a set of n existing points F
such that the Voronoi region of q is maximized. Dehne
et al. [5] showed that, when the given points are in
convex position, the area function has only a single lo-
cal maximum inside the region where the set of Voronoi
neighbors do not change. For the same problem, Cheong
et al. [4] gave a near-linear time algorithm that locates
the new optimal point approximately, when the points
in F are in general position. Variations of this problem,
involving maximization of the area of Voronoi regions of
a set of points placed inside a circle, have been recently
considered by Bhattacharya [2].

The analogous version of this problem in the discrete
user case is the problem of placing a new facility amidst
a set of existing ones such that the number of users
served by the new facility is maximized. This problem
has been recently addressed by Cabello et al. [3]. They
refer to this as the MaxCov problem. They showed that
in the L1 and L∞ metrics, the problem can be solved
in O(n log n) time. In the L2 metric, they proved that
if the number of existing facilities m ≥ 2, the Max-
Cov problem is 3SUM hard, and gave an algorithm for
finding the set of all possible optimal placements of the
new facility in O(n2) time. They also showed that for
m = 1 the MaxCov problem in L2 metric can be solved
in O(n log n) time, and this is asymptotically optimal
under the algebraic decision tree model.

Now, instead of placing one new facility, one may
wish to place multiple facilities simultaneously such
that they together serve the maximum number of users.
This leads to the following generalization of the MaxCov
problem.

k-MaxCov Problem: Given a set U of n users, and a set
F of m existing facilities with m < n, find the
placement of a set F ∗ of k (≥ 1) new facilities such
that the total number of users in U served by the
facilities in F ∗ is maximized. In other words, we
have to find the placement of a set F ∗ of k(≥ 1) new
facilities such that |

⋃
f∈F∗ U(f,F ∪ F ∗)| is maxi-

mized, for F ∗ ⊂ R2\F .

Clearly, the 1-MaxCov problem is nothing but the
MaxCov problem as discussed by Cabello et al. [3].
In this paper, we study the 2-MaxCov problem. Our
objective is to place two new facilities f and f ′ such
that the total number of users in U served by f and f ′

(|U(f,F∪{f, f ′})∪U(f ′,F∪{f, f ′})|) is maximized, for
f, f ′ ∈ R2\F . We begin by showing that if all the users
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and facilities are restricted to lie on a single straight line,
then the 2-MaxCov problem can be solved in O(n log n)
time. Using this idea, we give an algorithm for solving
the general 2-MaxCov problem, in the L1 and L∞ met-
rics, with worst case running time and spaceO(n2 log n).
Finally, we give an O(n log n) time algorithm for the 2-
MaxCov problem in the L2 metric for m = 1 (i.e., with
only one existing facility). We also consider the obnox-
ious version of this problem and obtain an O(n log n)
time algorithm for solving it in different metrics.

These problems can be interpreted as the simultane-
ous location of two new facilities in a competitive envi-
ronment [7, 9]. Imagine that a set of already existing
facilities are serving the users of a town. A new com-
pany, with the aim to compete with the existing facil-
ities, now wishes to establish two outlets in the town
simultaneously. The problem of maximizing the profit
of the company, in the sense that it serves the maximum
possible number of users, reduces to the 2-MaxCov prob-
lem.

2 The 2-MaxCov Problem

In this section we present our results for solving the 2-
MaxCov problem in the L1, L2, and L∞ metrics. For
a pair of points p and q in the plane the distances in
L1, L2, and L∞ metric are denoted by d1(p, q), d2(p, q),
and d∞(p, q), respectively. Let U = {u1, u2, . . . , un} be
the set of users and F = {f1, f2, . . . , fm} be the set of
existing facilities. For every user ui ∈ U , we denote by
φ(ui) the nearest facility of ui in F . The nearest facility
disk Ri of a user ui is the region such that if another
facility f is placed in that region, φ(ui) will no longer
remain the nearest facility for ui, and f becomes the
nearest facility of ui. Clearly, the interior of the nearest
facility disk for each user in any metric does not contain
any facility point.

Let A be the arrangement of the set of n nearest facil-
ity disks {R1, R2, . . . , Rn}, where Ri corresponds to the
user ui. The 1-MaxCov problem can be solved by find-
ing the cell cmax of maximum depth in the arrangement
A, where the depth of a cell is the maximum number of
nearest facility disks that overlap on that cell.

In the 2-MaxCov Problem, we have to place two new
facilities f and f ′ such that |U(f,F∪{f, f ′})∪U(f ′,F∪
{f, f ′})| is maximized, for f, f ′ ∈ R2\F . Suppose one
of the new facilities, say f , is placed at some cell c of A
where the disks {Ri1 , Ri2 , . . . , Rik} intersect, for some
{i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}. Then the best possible
position of another facility f ′, given the placement of the
facility f , such that |U(f ′,F ∪ {f, f ′})| is maximized
is the region of maximum depth in the arrangement
of {R1, R2, . . . , Rn}\{Ri1 , Ri2 , . . . , Rik}. Therefore, the
optimum placement of the two facilities f and f ′ in the
2-MaxCov problem can be obtained by checking each
cell c ∈ A as the position of f , and then compute the
best position of f ′ as mentioned above. In Figure 1, the
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Figure 1: Demonstration of 2-MaxCov problem in L2

optimal positions of f and f ′ are also shown using boxes
(2). Note that neither f nor f ′ is in the cell cmax.

2.1 The 2-MaxCov Problem on a Line
Let U = {u1, u2, . . . , un} be the set of users and F =
{f1, f2, . . . , fm} be the set of existing facilities all lying
on a straight line L. For every user ui ∈ U denote by Ii
the interval on L with center at the point ui and length
2|d(ui, φ(ui))|, where d(a, b) is the distance between a
pair of points a, b on L. As mentioned earlier, the inte-
rior of this interval does not contain any other facility.
The end-points of the intervals I = {Ii|ui ∈ U} split
the line L into k cells, namely A = {A1, A2, . . . , Ak},
where k ≤ 2n − 1. We consider all these regions for
the placement of f . When f is placed at a point ρ in
a cell, the subset of intervals Iρ ⊆ I that overlap on
the point ρ, are removed. Next, a point ρ′ on the line
L is identified for the placement of f ′ where maximum
number of intervals in I \ Iρ overlap. We now give a
formal description of the algorithm.

Put a point πi in the proper interior of each cell Ai
of the arrangement A. These points are referred to as
sites. Each point in Π = {π1, π2, . . . , πk} is attached
with a count χi indicating the number of intervals pass-
ing through the site πi. If a facility is positioned at πi,
the nearest facility of χi users will be changed to πi. So,
we need to search for another facility location π ∈ Π so
that it can serve maximum number of users apart from
these χi users. The χi values are calculated by consid-
ering the end-points of the intervals of I in order. We
construct a leaf-search balanced binary tree T with the
sites in Π at its leaves in order. The internal nodes of
T contain the discriminant values as is done in the in-
terval tree [1]. Two integer fields, namely max χ and η
are attached with each non-leaf node of T . The max χ
field indicates the maximum χ value among the leaves
in the subtree rooted at that node and η indicates the
excess count as in [8]. The sites in Π are processed in
left-to-right order. When a site π ∈ Π is processed, let
I denote the set of interval containing π. For each inter-
val µ ∈ I, we identify the sites in Π that are contained
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in µ, and reduce their count. During the processing,
when one moves from one site π to its next site, either
a new interval µ begins or an existing interval ν ends.
In the former case, the χ field of all the sites in the new
interval µ is reduced, and in the latter case, the χ field
of all the sites in that old interval are increased. Both
these tasks can be done in O(log n) time by traversing
the two paths corresponding to the two end-points of
the concerned intervals (µ or ν) from the root in T , and
using the excess fields η attached to each node on these
two paths. After the updates of χ values, we compute
max χ and the corresponding site π′ by a bottom-up
traversal along those two paths. If π is considered for
the placement of f , then f ′ will be placed at π′, and
both of them covers χ∗(π) = χ(π) + χ(π′) users. Fi-
nally, we choose that site for which χ∗ is maximum.

Theorem 1 The 2-MaxCov problem on a line can be
solved in O(n log n) time. 2

2.2 The 2-MaxCov Problem in L1 and L∞ Metrics
With an appropriate rotation of the coordinate axes by
an angle 450 in the L1 metric, we may consider each
Ri ∈ R as an axis-parallel square with center (intersec-
tion of two diagonals) at ui, in both the L1 and L∞
metrics,.

Let us consider the arrangement A of the members in
R. It may have O(n2) number of cells. Each cell in this
arrangement is an axis-parallel rectangle. If the end-
points of the lower boundary of a cell C are (x′, y) and
(x′′, y), then we choose a point (x

′+x′′

2 , y+ε) inside that
cell for the placement of a new facility, where ε is a very
small positive constant. These points will be referred to
as the sites. Note that, the sites are arranged in at most
n horizontal lines corresponding to the lower boundaries
of n squares. We store the sites in a range tree T [1],
where each leaf is attached with the corresponding χ
value (the number of squares containing that site), and
each internal node is attached with two integer fields
max χ and η. This needs O(n2 log n) space. Note that
while deleting/inserting a square the cumulative incre-
ment/decrement of χ/max χ values of nodes of T is
possible as we have done in Subsection 2.1. Thus, the
time required for removing or adding a square, the cor-
responding updating of max χ values, and finding the
site having maximum max χ value are all O(log2 n) in
the worst case. However, using fractional cascading [1]
this can be reduced to O(log n).

We process the event-points on each horizontal line
separately. While processing the sites on a horizontal
line as the possible placements of f , n squares may be
deleted and inserted in the data structure for computing
the best possible position for the corresponding place-
ment of f ′. This needs O(n log n) time. Thus, we have
the following theorem.

Theorem 2 In the L1 and L∞ metrics, the 2-MaxCov
problem can be solved in O(n2 log n) time and space. 2

If instead of range tree, 2D-tree is used to store the
sites, the space complexity reduces to O(n2), but the
time complexity increases to O(n2.5 log n).
2.3 2-MaxCov problem in L2 metric

Here, the nearest facility disks are circles of different
radii. The number of cells in an arrangement of n cir-
cles can be O(n2), and can be computed in O(n2) time
using O(n2) space; the region where the maximum num-
ber of circles overlap can also be computed in O(n2)
time [3]. Thus, the naive approach for solving the 2-
MaxCov problem in L2 metric needs O(n4) time and
O(n2) space. We present an efficient algorithm for the
case m = 1.

2.3.1 2-MaxCov problem with one existing facility

If there is only one existing facility, say f1, all the circles
{R1, R2, . . . , Rn} will pass through the point f1.

Observation 1 Each of the new facilities f and f ′ will
lie in a cell of A having f1 as a vertex. 2

Consider a circle ρ centered at f1 and not containing
any other vertex of the arrangement A. Each Ri creates
an arc on ρ. Thus, we have an arrangement A∗ of these
arcs on the periphery of the circle ρ. For each user there
is a point on the periphery of the circle ρ which is closer
to it than the existing facility. So, we need to consider
each cell of A∗ for the placement of f . The number of
cells in A∗ is O(n). After placing f , the circles, that
are covered by f , are removed from A∗. The place-
ment of f ′ should be the cell in the arrangement of the
remaining arcs having maximum degree. The naive al-
gorithm for this problem needs O(n2 log n) time, where
that the arrangement of the remaining arcs is computed
afresh in each time. This can be avoided by following
the same technique as in Section 2.1 for processing the
arcs Ii ∈ A∗ to identify a pair of sites for the placement
of f and f ′. Thus, we have the following theorem:
Theorem 3 The 2-MaxCov problem with one existing
facility can be solved in O(n log n) time. 2

3 The Obnoxious Version

In the preceding sections, we assumed that every user
avails the service from its nearest facility. However, in
obnoxious facility location problems, the customer no
longer finds a facility desirable and wants to stay as
far way from it as possible. Given a set U of n users
and a set Fo of m obnoxious facilities, for every facility
f ∈ Fo let U(f,Fo) = {u ∈ U|d(u, f) ≥ d(u, f ′),∀ f ′ ∈
Fo\{f}}. We now introduce the obnoxious version of
the k-MaxCov problem as follows:
k-Farthest-MaxCov problem: Given a set U of n users,

a set Fo of m existing obnoxious facilities with
m < n, and a bounded region C ⊂ R2, find the
placement of a set F ∗ of k (≥ 1) new obnoxious
facilities such that |

⋃
f∈F∗ U(f,Fo ∪ F ∗)| is maxi-

mized, for F ∗ ⊂ C\Fo.
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Figure 2: 2-Farthest MaxCov problem: the facility f
serves the user u4 and C ⊂

⋃3
i=1Ri.

The case k = 1 has been studied by Cabello et al. [3].
They referred it the Farthest-MaxCov problem, and gave
an O(n log n) time algorithm for solving the problem in
all the L1, L2 and L∞ metrices.

We study the 2-Farthest MaxCov problem in all the
L1, L2, and L∞ metrics. For every user ui ∈ U we
denote by φo(ui) its farthest facility. Let Ri be the far-
thest facility disk with center at the point ui and radius
d(ui, φo(ui)). Let Ao denote the arrangement produced
by the set of the n such disks {R1, R2, . . . , Rn}.

Observation 2 If a new facility f∗ /∈ Fo is placed in
some cell Ai ∈ Ao, then the number of users that are
served by f∗ is the number of disks that do not contain
the cell Ai. 2

Lemma 4 If the desired region C is bounded, both the
new facilities f and f ′ will lie on the boundary of C.

Proof. Observe that all the facilities in Fo are con-
tained in every circle Ri; this implies that

⋂n
i=1Ri con-

tains all the facilities Fo. Let f and f ′ be any two
points in Ao ∩ C and α be a point in

⋂n
i=1Ri. Now,

the rays
−→
αf and

−→
αf ′ can only leave disks one after one.

Therefore, if both the directed lines
−→
αf and

−→
αf ′ intersect

the boundary of C at the points a and b respectively,
then we have |U(a,Fo ∪ {a, b}) ∪ U(b,Fo ∪ {a, b})| ≥
|U(f,Fo ∪ {f, f ′}) ∪ U(f ′,Fo ∪ {f, f ′})|. �

Now, suppose an obnoxious facility f is already placed
somewhere on Ao ∩ δC, where δC is the boundary
of the region C. The circles Ri which do not con-
tain the facility f will correspond to the users which
will be served by f . Suppose the point f lies inside
the circles Ri1 , Ri2 , . . . , Rip , for some {i1, i2, . . . , ip} ⊂
{1, 2, . . . , n}. Here the following two cases can arise:
δC\

⋃p
j=1Rij 6= ∅ : Here a region on δC exists where

no circle of {Ri1 , Ri2 , . . . , Rip} overlap. In this
case, the best possible location of the next facil-
ity f ′, given the placement of f , is any point on
δC\

⋃p
j=1Rij . In this case, the new facilities f and

f ′ serve all the users in U .

δC\
⋃p
j=1Rij = ∅: Here f ∈

⋂p
j=1Rij and C ⊂⋃p

j=1Rij (see Figure 2). In other words, every
point on δC is covered by at least one of the cir-
cles in {Ri1 , Ri2 , . . . , Rip}. Here, we need to place
f ′ on δC where minimum number of members in⋃p
j=1Rij overlap.

Theorem 5 The 2-Farthest MaxCov problem in any
one of L1, L2 and L∞ metrics can be solved in
O(n log n) time.
Proof. Note that δC is a closed curve of constant com-
plexity, say k. We compute the segments of δC inter-
sected by Rij for j = 1, 2, . . . , p. Since each segment of
δC can intersect Rij in at most one segment in each of
the aforesaid three metrics, the number of arc-segments
of Rij on δC is at most k. Thus, the total number
of arc-segments created on δC by the circles Rij for
j = 1, 2, . . . , p is at most kn, since p ≤ n.

Similar to the 2-MaxCov problem with one existing
facility, we have an arrangement of at most kn arcs on
δC, which creates at most 2kn cells. Each cell is covered
by at least one arc. We need to find two cells such that
the total number of distinct arcs covering these two cells
is minimum. Using the same data structure as in the
Subsection 2.1, this problem can be solved in O(n log n)
time. �
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