
CCCG 2010, Winnipeg MB, August 9–11, 2010

Range Aggregate Structures for Colored Geometric Objects.

Saladi Rahul∗ Haritha Bellam† Prosenjit Gupta‡ K. S. Rajan§

Abstract

A set of n colored objects (points/hyperboxes) lie in
IRd. Each object has a weight associated with it. Given
a query orthogonal range q, for each distinct color c of
the objects in S ∩ q, the tuple 〈 c, F(c) 〉 is reported
where F(c) is the object of color c with the maximum
weight.

1 Introduction

Range Searching and its variants have been widely stud-
ied in the field of Computational Geometry. In many
applications a more general form of these problems arise.
The objects in S come aggregated in disjoint groups and
of interest are questions regarding the intersection of q
with the groups rather than with the objects. For conve-
nience we shall associate a distinct color for each group
and assume that all the objects in the group have that
color. These class of problems are referred to as Gen-
eralized Intersection Searching. [6] is a survey paper on
the latest results on this topic.

In many applications like on-line analytical processing
(OLAP), geographic information systems (GIS) and in-
formation retrieval (IR), aggregation plays an important
role in summarizing information [12] and hence large
number of algorithms and storage schemes have been
proposed to support such queries. In range-aggregate
query problems [12] many composite queries involving
range searching are considered, wherein one needs to
compute the aggregate function of the objects in S ∩ q
rather than report all of them as in a range reporting
query. In [9], range-aggregate problems were solved on
colored objects.

This paper presents some results on range-aggregate
queries on colored objects. The general problem state-
ment is the following : Preprocess a set S of weighted
colored geometric objects in IRd, d = 1, 2, such that
given a query orthogonal range q, we can report effi-
ciently for each distinct color c of the objects in S ∩ q,
the tuple 〈c,F(c)〉 where F(c) is the object of color c
∗Lab for Spatial Informatics, IIIT-Hyderabad, India,

saladi.rahul@gmail.com
†Lab for Spatial Informatics, IIIT-Hyderabad, India,

pinki.b.haritha@gmail.com
‡Yahoo! Research and Development, Bangalore 560093, India,

prosenjit gupta@acm.org
§Lab for Spatial Informatics, IIIT-Hyderabad, India,

rajan@iiit.ac.in

with the maximum weight. Section 2 and Section 3 deal
with these problems. The uncolored version of these
problems were discussed in [1].

We define a couple of terms. Consider two points
p(p1, p2, . . ., pd) and q(q1, q2, . . ., qd). If pi > qi, ∀
1 ≤ i ≤ d then p is defined to be dominating q and
q is defined to be dominated by p. Given a point set
S, a point q ∈ S is called a maximal point iff q is not
dominated by any other point in S.

2 Generalized Orthogonal Range-Max query

Problem: S is a set of n colored objects in IRd where
each point p is assigned a weight w(p). Sc is the set of
points of S having color c. We wish to preprocess S into
a data structure so that given a query orthogonal hy-
perbox q = Πd

i=1[ai, bi], we can report for each distinct
color c of the points in q, the tuple 〈 c, pc 〉 where pc
= max {w(pc) | pc ∈ Sc and pc ∈ q}, i.e., the point in
Sc ∩ q with the topmost/maximum weight.

This problem can be solved by modifying the solution
to the range-aggregate problem on colored points where
the function F(c) was the sum of the weights of the
points of color c in q [9]. The sum function is replaced by
max function. This leads to a solution of space O(n1+ε)
and O(log n + k) query time for d ≥ 2. However, in this
section we shall come up with a solution which reduces
the space needed to O(n log2 n) while retaining the same
query time for d=2.

2.1 Quadrant query, q = [a1,∞) × [a2,∞)

In this subsection we shall consider the problem for
quadrant queries, q = [a1,∞) × [a2,∞). Consider
points p(px, py) and r(rx, ry) both having the same
color c. Let rx > px, ry > py and w(r) > w(p). For an
arbitrary query q, if p lies in q then r will also lie in q and
since w(r) is greater than w(p), point p cannot have the
maximum/topmost weight among Sc ∩ q. Hence, such
points are can be removed from consideration.

In order to remove the points of S which cannot be
candidates for maximum/topmost weight, we do the
following: Fix a color c. Map each point p(px, py)
∈ Sc to a three-dimensional point p′(px, py, w(p)).
Call this new set of transformed points S′c. Maximal
points, M ′c, of S′c are found out in IR3. This can be
done in time O(|S′c| log2 |S′c| + |M ′c|). M ′c represents
the set of points from S′c (or Sc) which are possible

22nd Canadian Conference on Computational Geometry, 2010

candidates for topmost/maximum weight for color c.
This process is repeated for each color c. Denote M ′

=
⋃
∀cM

′
c. The total time taken for finding M ′ will

be O(Σ∀c(|S′c| log2 |S′c| + |M ′c|)) ≡ O(log2 n × Σ|S′c| +
Σ|M ′c|) ≡ O(n log2 n + |M ′|) ≡ O(n log2 n) since |M ′|
≤ n.

30

50

25

r(10)

100

r(100)

20

10

r(25)

r(30)

r(80) 80

r(50)

Figure 1: For a particular color c, set Mc is being shown.
These points are the only candidates from color c which can
have the topmost/maximum weight for a Generalized Or-
thogonal Range-Max query.

Once again fix a color c. New we shift our attention
from Sc to M ′c. Each point p′(px, py, w(p)) ∈ M ′c is
mapped back to its original two-dimensional point p(px,
py) with weight w(p). Call this set Mc. Notice that all
the points in Mc need not be maximal w.r.t. to the two-
dimensional plane, though they were all maximal points
in three-dimensional space as part of set M ′c (as shown
in Figure 1). This process is repeated for each color c.

For each color c, set Mc is divided into layers of max-
imal points in IR2. Layer 1 is denoted by M1

c which
is nothing but the set of maximal points of Mc in IR2.
Layer l, M l

c (l > 1), is defined to be the set of maximal
points of Mc \

⋃l−1
j=1M

j
c in IR2. These layers are defined

until we reach an empty layer. In Figure 1, we show an
example of a set Mc having seven points. The weight
associated with each point is also shown. For the pur-
pose of discussion, each point is uniquely referred to by
its weight. In this example Mc gets divided into three
layers of maximal points. Layer 1, M1

c= {10}; Layer 2,
M2
c = {30, 20, 25} and Layer 3, M3

c = {50, 100, 80}.
These “layers of maximal points” for each set Mc are

obtained as follows: Based on the points in Mc we build
a data structure T described in [10]. T maintains the
set of maximal points in the plane of set Mc. Initial
building of the structure takes O(|Mc| log |Mc|) time.
Insertion or Deletion of a point is handled in O(log |Mc|)
amortized time. The reporting of maximal points takes
O(r) time where r is the number of maximal points.
Using T we can directly find out the set of maximal
points of Mc which constitutes M1

c . Now all the points

in M1
c are deleted from T . Now the maximal points

reported by T will be M2
c . Next all the points in M2

c

are deleted from T . This process is repeated iteratively
till T becomes empty. The time taken for finding layers
of Mc will be O(|Mc| log |Mc|). Total time taken for
finding all sets Mc will be O(n log n).

For a query quadrant q = [a1,∞) × [a2,∞), call (a1,
a2) to be an apex point of q. Now for each point p ∈
Mc, we shall define a region r(p). If (a1, a2) stabs a
particular region r(p) then the point p corresponding
to that region will have the maximum weight among
Sc ∩ q. Let Mc have l layers of maximal points. We
start with M l

c (layer l) and go till M1
c (layer 1). The

points in M l
c are sorted in decreasing order based on

their weights. The first point in the list, p(px, py), is
assigned the region r(p) = (−∞, px] × (−∞, py]. The
ith point in the list M l

c is assigned the region r(p) =
(−∞, px] × (−∞, py] \

⋃
r(p′), where the union is over

the first i - 1 points in the list M l
c. See M3

c (layer 3)
in Figure 1 on how r(100), r(80) and r(50) have been
assigned. Let R(l′) =

⋃
r(p), where the union is over

all the points in M l′

c . For layers above M l
c we do the

following: Suppose we are at a layer l′. Then we sort the
points in M l′

c in decreasing order of their weights. Then
the ith point p(px, py) in M l′

c is assigned the region r(p)
= (−∞, px] × (−∞, py] \

⋃l
j=l′+1R(j) \

⋃
r(p′), where

the union over r(p′) is the first i - 1 points in the list
M l′

c . The region associated with each point in Mc is
shown in Figure 1. The shaded region shows the region
associated with point 20. So given a query q, we need
to check in which region (a1, a2) lies and the point of
Mc corresponding to that region has to be reported.

If the region r(p) associated with point p ∈ Mc is not
in the form of an axis-parallel rectangle, then r(p) is
broken into axis-parallel rectangles (see r(30) in Figure
1). So, for each color c we have a collection of disjoint
rectangles χc. χc ≡ O(|Mc|), since from each point in
Mc at most three rays are shooting out (see Figure 1)
and it is a planar surface. Based on the rectangles χc
obtained for each color c we build an instance of the
structure D in [3]. Given a query point, D reports all
the rectangles stabbed by the query point. The number
of rectangles stored in D will be O(n).

Finally, when we are given a query quadrant q =
[a1,∞) × [a2,∞), we shall query D with (a1, a2) and
for each rectangle that gets stabbed, the point that cor-
responds to that rectangle along with its weight is re-
ported. Note that at most only one rectangle of each
color is reported.

Theorem 1 A set of n colored points in IR2 can be
stored in a linear-size structure such that given a query
quadrant q = [a1,∞) × [a2,∞), a generalized orthogo-
nal range-max query can be answered in O(log n + k)
time.

CCCG 2010, Winnipeg MB, August 9–11, 2010

2.2 Bounded rectangular query

In this subsection we solve the problem for bounded
orthogonal query rectangle q=[a1, b1] × [a2, b2]. The
solution is based on the quadrant range-max structure
of Theorem 1. We first show how to solve the problem
for query rectangles q′ = [a1, b1] × [a2, ∞). In this
discussion, NE-query would mean [a1, ∞) × [a2, ∞)
and NW -query would mean (−∞, b1) × [a2, ∞). We
store the points of S in sorted order by x-coordinate at
the leaves of a balanced binary tree T ′. At each internal
node v, we store an instance of the structure of Theo-
rem 1 for NE-queries (resp., NW -queries) built on the
points in v’s left (resp., right) subtree. Let X(v) denote
the average of the x-coordinate in the rightmost leaf in
v’s left subtree and the x-coordinate in the leftmost leaf
of v’s right subtree.

To answer a query q′, we do a binary search down T ′,
using [a1, b1] until a highest node v is reached such that
[a1, b1] intersects X(v). If v is a leaf, then if v′s point
is in q′ we report its color. If v is a non-leaf, then we
query the structures at v using the NE-quadrant and
the NW -quadrant derived from q′ (i.e., the quadrants
w.r.t. points at (a1, a2) and (b1, a2), respectively), and
then combine the answers. The space occupied by T ′

becomes O(n log n) and the query time remains O(log n
+ k).

To solve the problem for general query rectangles q
= [a1, b1] × [a2, b2], we use the above approach again,
except that we store the points in the tree sorted by
y-coordinates. At each internal node v, we store an
instance of the data structure above to answer queries
of the form [a1, b1] × [a2,∞) (resp., [a1, b1] × (−∞, b2])
on the points in v’s left (resp., right) subtree. The query
strategy is similar to the previous one, except that we
use the interval [a2, b2] to search in the tree. The space
increases by a log factor though the query time remains
the same.

Theorem 2 A set of n colored points in IR2 can be
stored in a structure of size O(n log2 n) such that given
a query rectangle q = [a1, b1] × [a2, b2], a generalized
orthogonal range-max query can be answered in O(log n
+ k) time.

2.3 Solution for d = 1

In this subsection we shall solve the problem for d = 1.
Each point p(px) ∈ S is mapped to a 2-dimensional
point p′(px, -px). Call the new set of points S′. Given
a query interval q=[a1, b1], it is mapped to a quad-
rant q′= [a1,∞) × [−b1,∞). So, the problem has
been mapped to the quadrant query problem in two-
dimensional plane, where S′ is the set of points and q′

is the query quadrant. Hence, the structure in Theorem
1 can be used to solve this problem.

Theorem 3 A set of n colored points in IR1 can be
stored in a linear-size structure such that given a query
interval q=[a1, b1], a generalized orthogonal range-max
query can be answered in O(log n + k) time.

3 Generalized orthogonal stabbing-max query

Problem: S is a set of n colored hyperboxes in IRd

where each hyperbox γ is assigned a weight w(γ). Sc is
the set of hyperboxes of S having color c. We wish to
preprocess S into a data structure so that given a query
point q in IRd, we can report for each distinct color c of
the hyperboxes stabbed by q, the tuple 〈 c, γc 〉 where γc
= max {w(γc) | γc ∈ Sc and q ∈ γc }, i.e., the hyperbox
in Sc ∩ q with the topmost/maximum weight.

We begin by providing a solution to this problem for
d = 1. Then a solution is provided for d = 2.

3.1 Solution for d = 1

We start of with n colored segments on the real-line.
Consider a color c and the segments Sc of that color.
Let p1, p2, . . ., pm be the list of segment endpoints of Sc
sorted from left to right. These endpoints induce par-
titions on the real-line and these partitions are called
“elementary intervals”. The elementary intervals, say
Ic, from left to right are: (−∞, p1), [p1, p1], (p1, p2),
[p2, p2], . . ., (pm−1, pm), [pm, pm], (pm, ∞). With each
interval i ∈ Ic, we shall store w(γ), where γ is the seg-
ment with the maximum weight among all the segments
of Sc which intersects interval i. If any interval is not
intersected by any of the segments of Sc then it is dis-
carded from Ic. Based on the elementary intervals in Ic,
for all colors c, we build an interval tree IT . The num-
ber of intervals stored in IT will be bounded by O(n).
Given a query point q, we search IT and the intervals
stabbed by q are reported. The weight associated with
each interval is the required answer.

Theorem 4 A set of n segments can be stored in a
linear-size structure such that given a query point q,
a generalized stabbing-max query can be answered in
O(log n + k) time.

3.2 Solution for d = 2

Our approach for solving the problem in two-
dimensional plane is to design a dynamic data structure
for the one-dimensional version of the problem which
can handle query as well as updates efficiently. This is
followed by making this data structure partially persis-
tent using the technique of Driscoll et. al. [4].

First, we build the dynamic data structure for the
1D version. Based on the segments in S an augmented
segment tree T is built as follows: The segments of S di-
vide the real-line into elementary intervals. A balanced

22nd Canadian Conference on Computational Geometry, 2010

binary tree T is built with these elementary intervals
as the leaves of the tree. Then each segment in S is in-
serted into T . Consider a node v of T . Let Svc be the set
of segments of color c assigned to node v. A red-black
tree T vc is built based on the weights of the segments in
set Svc (in decreasing order of weights). Also a pointer
is maintained from the root of T vc to the leftmost leaf in
it. In this way red-black trees are built for each unique
color of the segments assigned to node v. Given a query
point q on the real-line, we search in T . At each node v
visited from root to leaf, the weight stored in the left-
most leaf of each red-black tree T vc is reported. For each
color, the maximum among all the weights reported of
that color is found out. The space occupied by T is
O(n log n) and the query time is O(log n + k log n).

Now let us consider updates. Insertion of a segment
of color c would involve going to O(log n) nodes in T and
inserting itself into the secondary red-black tree T vc . A
new tree T vc is created if it does not exist previously.
So, insertion time will be O(log2 n) amortized due to
possibility of a rotation taking place. Similar analysis
holds for deletion of segments.

Now the 1D solution has to be made partially persis-
tent. Following the technique of [11], the x-span of all
the rectangles are considered, then broken into elemen-
tary intervals and the primary structure of the segment
tree is built. We make it persistent by sweeping a hor-
izontal line l from top to bottom, inserting the y-span
of a rectangle when it is “entered” by l and delete the
same y-span when the sweeping line “leaves” that rect-
angle. Note that now there won’t be any rotations tak-
ing place during insertions and deletions of y-spans since
the primary structure has already been built on O(n)
segments. Hence, the number of changes taking place
during an update will be bounded by O(log n) (constant
changes at each of the O(log n) nodes it is/was assigned
to). A 2D-Generalized orthogonal stabbing-max query
thus can be answered by first identifying the appropri-
ate version of D and then using it to answer the 1D
problem. This leads to the following theorem.

Theorem 5 A set of n rectangles can be stored in a
structure of size O(n log n) such that given a query point
q ∈ IR2, a generalized stabbing-max query can be an-
swered in O(log n + k log n) time.

References

[1] Pankaj K. Agarwal, Lars Arge, Jun Yang, Ke
Yi. I/O-Efficient Structures for Orthogonal Range-
Max and Stabbing-Max Queries. 11th European
Symposium on Algorithms, 7–18, 2003.

[2] Jean-Daniel Boissonnat , Micha Sharir , Boaz
Tagansky , Mariette Yvinec. Voronoi diagrams

in higher dimensions under certain polyhedral dis-
tance functions. 11th annual symposium on Com-
putational geometry, 79–88, 1995.

[3] B. M. Chazelle. Filtering search: A new approach
to query answering. SIAM Journal of Computing,
15, 703–724, 1986.

[4] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E.
Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38:86–124, 1989.

[5] P. Gupta, R. Janardan and M. Smid. Efficient non-
intersection queries on aggregated geometric data.
11th International Computing and Combinatorics
Conference, 544–553, 2005.

[6] P. Gupta, R. Janardan and M. Smid. Computa-
tional geometry: Generalized intersection search-
ing. Chapter 64, Handbook of Data Structures
and Applications, D. Mehta and S. Sahni (editors),
Chapman & Hall/CRC, Boca Raton, FL, 64–1-64–
17, 2005.

[7] R. Janardan and M. Lopez. Generalized intersec-
tion searching problems. International Journal of
Computational Geometry and Applications, 3:39–
69, 1993.

[8] E.M. McCreight. Priority search trees. SIAM Jour-
nal of Computing, 14(2), 257–276, 1985.

[9] Saladi Rahul, Prosenjit Gupta and Krishnan Ra-
jan. Data Structures for Range Aggregation by
Categories 21st Canadian Conference on Compu-
tational Geometry (CCCG2009) , pages 133-136,
2009.

[10] Sanjiv Kapoor. Dynamic Maintenance of Maxima
of 2-d Point Sets, SIAM Journal of Computing,
29(6): 1858–1877, 2000.

[11] Qingmin Shi, Joseph JáJá. Optimal and near-
optimal algorithms for generalized intersection re-
porting on pointer machines. Information Process-
ing Letters, 95(3): 382–388, 2005.

[12] Y. Tao and D. Papadias. Range aggregate pro-
cessing in spatial databases. IEEE Transactions
on Knowledge and Data Engineering, 16(12), 2004,
1555–1570.

