
CCCG 2010, Winnipeg MB, August 9–11, 2010

The traveling salesman problem for lines and rays in the plane

Adrian Dumitrescu∗

Abstract

In the Euclidean TSP with neighborhoods (TSPN), we
are given a collection of n regions (neighborhoods) and
we seek a shortest tour that visits each region. In the
path variant, we seek a shortest path that visits each
region. In this note we present several linear-time ap-
proximation algorithms with improved ratios for these
problems for two cases of neighborhoods that are (infi-
nite) lines, and respectively, (half-infinite) rays.

Keywords: Traveling salesman problem with neighbor-
hoods, lines, rays, approximation algorithm.

1 Introduction

In the Euclidean traveling salesman problem (TSP),
given a set of points in the plane, one seeks a shortest
tour that visits each point. If now each point is replaced
by a (possibly disconnected) region, one obtains the so-
called TSP with neighborhoods (TSPN), first studied
by Arkin and Hassin [1]. A tour for a set of neighbor-
hoods is also referred to as a TSP tour. A path for a
set of neighborhoods is also referred to as a TSP path.

For the case of neighborhoods that are (infinite)
straight lines, an optimal tour can be computed
in O(n5) time [2, 8, 9] (see also [5]), and a

√
2-

approximation can be computed in O(n) time [5]. For
the case of neighborhoods that are (half-infinite) rays,
no polynomial time algorithm is known for computing
an optimal tour, and a

√
2-approximation can be com-

puted in O(n) time [5]. In this paper we present several
linear-time approximation algorithms with improved ra-
tios for these problems. The obvious motivation is to
provide faster and conceptually simpler algorithmic so-
lutions. As mentioned above, while for the case of rays
no polynomial time algorithm is known, for the case of
lines, the only known algorithms reduce the problem of
computing an optimal tour of the lines to that of com-
puting an optimal watchman tour in a simple polygon
for which the known algorithms are quite involved and
rather slow for large n [2, 8, 9].

In this paper, we present four improved linear-time
approximation algorithms for TSP, for two cases of
neighborhoods, that are straight lines, and respectively,

∗Department of Computer Science, University of Wisconsin–

Milwaukee, WI 53201-0784, USA. Email: dumitres@uwm.edu.

Supported in part by NSF CAREER grant CCF-0444188.

straight rays in the plane. Our algorithms are all based
on solving low-dimensional linear programs. Our results
are summarized in Table 1.

Theorem 1 Given a set of n lines in the plane: (i)
A TSP tour that is at most 1.28 times longer than the

optimal can be computed in O(n) time. (ii) A TSP path

that is at most 1.61 times longer than the optimal can

be computed in O(n) time.

For lines, the previous best approximations obtained
in linear time were

√
2 ≈ 1.41 and 2

√
2 ≈ 2.82, respec-

tively [5].

Theorem 2 Given a set of n rays in the plane: (i) A

TSP tour that is at most 1.28 times longer than the

optimal can be computed in O(n) time. (ii) A TSP path

that is at most 2.55 times longer than the optimal can

be computed in O(n) time.

For rays, the previous best approximation for tours
was

√
2 ≈ 1.41 [5] (obtained also in linear time, however

this was the only approximation known), while for paths
there was no approximation known.

Preliminaries. For a polygon P , let per(P) denote its
perimeter. For a rectangle Q, let long(Q) denote the
length of a longest side of Q. For a ray ρ, let ℓ(ρ) denote
its supporting line. Let L be a given set of n lines, and
let T ∗(L) be an optimal tour (circuit) of the lines in L.
Let R be a given set of n rays, and let T ∗(R) be an
optimal tour (circuit) of the rays in R.

Following the terminology from [3, 7], a polygon is
an intersecting polygon of a set of regions in the plane
if every region in the set intersects the interior or the
boundary of the polygon. The problem of computing
a minimum-perimeter intersecting polygon (MPIP) for
the case when the regions are line segments was first
considered by Rappaport [7] in 1995. As of now, MPIP
(for line segments) is not known to be polynomial, nor
it is known to be NP-hard.

Since both lines and rays are infinite (i.e., unbounded
regions) finding optimal tours T ∗(L) and T ∗(R) are
equivalent to finding minimum-perimeter intersecting
polygons (MPIPs) for L and R respectively. We can
assume without loss of generality that not all lines in
L are concurrent at a common point (this can be eas-
ily checked in linear time), thus per(T ∗(L)) > 0. The

22nd Canadian Conference on Computational Geometry, 2010

Ratio Tour (old ratio) Tour (new ratio) Path (old ratio) Path (new ratio)

Lines
√

2 = 1.41 . . . 1.28 2
√

2 = 2.82 . . . 1.61

Rays
√

2 = 1.41 . . . 1.28 − 2.55

Table 1: Old and new approximation ratios. No approximation for paths on rays was reported in [5].

same assumption can be made for the rays in R, thus
per(T ∗(R)) > 0.

The following two facts are easy to prove; see also [3,
4, 7].

Observation 1 If P1 is an intersecting polygon of L,

and P1 is contained in another polygon P2, then P2 is

also an intersecting polygon of L. The same statement

holds for R.

Observation 2 T ∗(L) is a convex polygon with at most

n vertices. Similarly, T ∗(R) is a convex polygon with

at most n vertices.

A key fact in the analysis of the approximation algo-
rithm is the following lemma. This inequality is implicit
in [10]; a more direct proof can be found in [3].

Lemma 3 [3, 10]. Let P be a convex polygon. Then the

minimum-perimeter rectangle Q containing P satisfies

per(Q) ≤ 4

π
per(P).

2 TSP for lines

In this section we prove Theorem 1.

TSP tours. We present a 4

π
(1+ε)-approximation algo-

rithm for computing a minimum-perimeter intersecting
polygon of a set L of n lines, running in O(n) time.
If we set ε = 1/200, we get the approximation ra-
tio 1.28. For technical reasons (see below) we choose
ε ∈ [1/300, 1/200] uniformly at random, and the ap-
proximation ratio remains 1.28. The algorithm com-
bines ideas from [3, 4, 5]. As in [3], we first use the
fact (guaranteed by Lemma 3) that every convex poly-
gon P is contained in some rectangle Q = Q(P) that
satisfies per(Q) ≤ 4

π
per(P). In particular, this holds

for the optimal tours T ∗(L) and T ∗(R). Then we use
linear programming to compute a (1+ε)-approximation
for the minimum-perimeter intersecting rectangle of L
(as in [3]; see also[5]).

Algorithm A1.

Let m = ⌈ π

4ε
⌉. For each direction αi = i · 2ε,

i = 0, 1, . . . , m − 1, compute a minimum-perimeter
intersecting rectangle Qi of L with orientation αi.
Return the rectangle with the minimum perimeter
over all m directions.

We now show how to compute the rectangle Qi by
linear programming. By a suitable rotation (by an-
gle αi) of the set L of lines in each iteration i ≥ 1,
we can assume that the rectangle Qi is axis-parallel.
This can be obtained in O(n) time (per iteration). Let
{q1, q2, q3, q4} be the four vertices of Qi in counterclock-
wise order, starting with the lower leftmost corner as in
Figure 2. As in [5], let L = L− ∪L+ be the partition of
L into lines of negative slope and lines of positive slope.
By setting ε ∈ [1/300, 1/200] uniformly at random, in
each iteration i, with probability 1 there are no vertical
lines in (the rotated set) L.

Observe (as in [5]), that a line in ℓ ∈ L+ intersects
Qi if and only if q2 and q4 are separated by ℓ (points
on ℓ belong to both sides of ℓ). Similarly, a line in
ℓ ∈ L− intersects Qi if and only if q1 and q3 are sep-
arated by ℓ. The objective of minimum perimeter is
naturally expressed as a linear function. The resulting
linear program has 4 variables x1, x2, y1, y2 for the rect-
angle Qi = [x1, x2] × [y1, y2], and 2n + 2 constraints.

minimize 2(x2 − x1) + 2(y2 − y1) (LP1)

subject to

y2 ≥ ax1 + b, ℓ : y = ax + b ∈ L+

y1 ≤ ax2 + b, ℓ : y = ax + b ∈ L+

y1 ≤ ax1 + b, ℓ : y = ax + b ∈ L−

y2 ≥ ax2 + b, ℓ : y = ax + b ∈ L−

x1 ≤ x2

y1 ≤ y2

Let Q∗ be a minimum-perimeter intersecting rectan-
gle of L. To account for the error made by discretiza-
tion, we need the following easy fact; see [3, Lemma
2].

Lemma 4 [3]. There exists an i ∈ {0, 1, . . . , m − 1}
such that per(Qi) ≤ (1 + ε) per(Q∗).

By Observations 1 and 2, and by Lemmas 3 and 4,
the algorithm A1 computes a tour that is at most 1.28
longer than the optimal. The algorithm solves a con-
stant number of 4-dimensional linear programs, each in
O(n) time [6]. The overall time is O(n).

TSP paths. The key to the improvement is offered by
the following.

Observation 3 Let Q be a rectangle. Then Q inter-

sects a set of lines L if and only if any three sides of Q
intersect L.

CCCG 2010, Winnipeg MB, August 9–11, 2010

Proof. Fix any three sides of Q: {s1, s2, s3} (each si is
a closed segment). Now if ℓ is a line intersecting Q, then
ℓ intersects at least two sides of Q, hence it intersects
at least one element of {s1, s2, s3}, as required. �

The next lemma gives a quantitative upper bound
on the total length of three shorter sides of a rectangle
enclosing a curve.

Lemma 5 Any open curve of length L can be included

in a rectangle Q, so that per(Q) − long(Q) ≤ 6(2 −√
3)L = 1.6076 . . .L.

Proof. Let γ be an open curve of length |γ| = L, and
let a, b ∈ γ be a diameter pair. We can assume w.l.o.g.
that ab is a horizontal segment of unit length |ab| = 1,
where a = (0, 0), b = (1, 0). The two points a and b
partition γ into three parts, γi, i = 1, 2, 3; (γ1 or γ3

may be empty).

1. γ1: from one endpoint of γ to a.

2. γ2: from a to b.

3. γ3: from b to the other endpoint of γ.

We show that γ can be included in an axis-parallel
rectangle Q, whose vertical sides are incident to the
points a and b respectively, and satisfying the claimed
inequality.

Let l and h be the lowest and resp. highest point of
γ. Let y1, y2 ≥ 0 be the y-coordinates of h and resp. l
in absolute value. Write y = y1 + y2. Since γ has unit
diameter, we have y ≤ 1. Set Q = [0, 1] × [y(l), y(h)],
and observe that γ is contained in Q. Clearly,

per(Q) − long(Q) = 1 + 2(y1 + y2) = 1 + 2y.

We distinguish three cases, depending on which part
of γ the two extreme points l and h are located. We can
assume w.l.o.g. (by symmetry) that h ∈ γ1 or h ∈ γ2.
See Figure 1. In each case, we derive a lower bound on
L as a function of y1 and y2, and then find an upper
bound for the ratio (per(Q) − long(Q))/L. The case
analysis is omitted due to space constraints. �

To compute a TSP path for a set of n lines, we
use the algorithm A2 we describe next. This algo-
rithm is similar to algorithm A1, and computes a rect-
angle in each direction from a given sequence. The
only difference in the linear program is that instead of
minimizing the perimeter of an intersecting rectangle,
2(x2 − x1) + 2(y2 − y1), it minimizes the sum of the
lengths of three sides, namely (x2 − x1) + 2(y2 − y1).
The objective function is not symmetric with respect to
the two coordinates axes, and so the number of direc-
tions m, from algorithm A1, is m = ⌈ π

2ε
⌉ in algorithm

A2. Let now Q∗ be an intersecting rectangle of L with
minimum sum of the lengths of three sides. Analogous
to Lemma 4 we have

Lemma 6 There exists an i ∈ {0, 1, . . . , m − 1} such

that

per(Qi) − long(Qi) ≤ (1 + ε) (per(Q∗) − long(Q∗)).

By Lemma 5 and Lemma 6 the approximation ratio
is 6(2 −

√
3)(1 + ε), and we set ε = 1/1000 (or slightly

smaller, as before), to obtain the approximation ratio
1.61. This completes the proof of Theorem 1.

3 TSP for rays

As noted in [5]: If the lines are replaced by line segments
the problem of finding an optimal tour becomes NP-
hard. Should the lines be replaced by rays, we get a
variant of the problem that lies somewhere in between
the variant for lines and that for line segments, and
whose complexity is open.

In this section we prove Theorem 2. The algorithm
A1 from Section 2 can be adapted to compute a 4

π
(1 +

ε)-approximate tour for a set R of n rays. As before,
assume that in the ith iteration, the rectangle Qi =
{q1, q2, q3, q4} is axis-parallel. A ray in R is said to
belong to the ith quadrant, i = 1, 2, 3, 4, if when placed
with its apex at the origin, its head belongs to the ith
quadrant. Let R = R1 ∪R2 ∪R3 ∪R4 be the partition
of the rays in R (after rotation) as dictated by the four
quadrants. See Figure 2. Observe that

q3q4

q1 q2

Figure 2: The rectangle Qi, and two rays, one in R1 and

one in R4 that intersect it.

• A ray ρ ∈ R1 intersects Qi if and only if q2 and q4

are separated by ℓ(ρ), and the apex of ρ is domi-
nated by q3.

• A ray ρ ∈ R2 intersects Qi if and only if q1 and q3

are separated by ℓ(ρ), and the apex of ρ lies right
and below q4.

• A ray ρ ∈ R3 intersects Qi if and only if q2 and q4

are separated by ℓ(ρ), and the apex of ρ dominates
q1.

• A ray ρ ∈ R4 intersects Qi if and only if q1 and
q3 are separated by ℓ(ρ), and the apex of ρ lies left
and above q2.

22nd Canadian Conference on Computational Geometry, 2010

a a ab b b

Figure 1: The curve γ. From left to right: Case 1, Case 2 and Case 3.

Observe that these intersection conditions can be
expressed as linear constraints in the four variables,
x1, x2, y1, y2. The constraints listed above also cor-
rect an error in the old

√
2-approximation algorithm

from [5], where it was incorrectly demanded that the
apexes of the rays must lie in the rectangle Qi. Indeed,
this condition is not necessary, and moreover, may pro-
hibit finding an approximate solution with the claimed
guarantee of

√
2.

The resulting algorithm A3 for computing an ap-
proximate tour for n given rays computes a minimum-
perimeter rectangle intersecting all rays over all m di-
rections. For each of these directions, the algorithm
solves a linear program with four variables and O(n)
constraints, as described above. The approximation ra-
tio is 4

π
(1+ε), and we set ε = 1/200 (or slightly smaller,

as before), to obtain the approximation ratio 1.28.

As noted in [5], by walking twice (back and forth)
along a path that visits all rays one gets a tour that visits
all rays. Obviously, the algorithm A3 finds a (closed)
path for n given rays. The approximation ratio for the
path found is not more than twice the ratio achieved for
a tour, so in our case 8

π
(1 + ε), and we set ε = 1/1000

(or slightly smaller), to obtain the approximation ratio
2.55. This completes the proof of Theorem 2.

References

[1] E. M. Arkin and R. Hassin, Approximation algo-
rithms for the geometric covering salesman prob-
lem, Discrete Appl. Math., 55 (1994), 197–218.

[2] S. Carlsson, H. Jonsson and B. J. Nilsson, Finding
the shortest watchman route in a simple polygon,
Discrete Comput. Geom. 22(3) (1999), 377–402.

[3] A. Dumitrescu and M. Jiang, Minimum-perimeter
intersecting polygons, Proc. of the 9th Latin Amer-

ican Theoretical Informatics Symposium (LATIN
2010), Oaxaca, Mexico, April 2010, Vol. 6034 of
LNCS, 433–445.

[4] A. Dumitrescu and J. Mitchell, Approximation al-
gorithms for TSP with neighborhoods in the plane,
Journal of Algorithms, 48(1) (2003), 135–159.

[5] H. Jonsson, The traveling salesman problem for
lines in the plane, Inform. Process. Lett., 82(3)
(2002), 137–142.

[6] N. Megiddo, Linear programming in linear time
when the dimension is fixed, Journal of ACM, 31
(1984), 114–127.

[7] D. Rappaport, Minimum polygon transversals of
line segments, Internat. J. Comput. Geom. Appl.,
5(3) (1995), 243–265.

[8] X. Tan, T. Hirata and Y. Inagaki, Corrigendum to
‘An incremental algorithm for constructing short-
est watchman routes’, Internat. J. Comput. Geom.

Appl., 9(3) (1999), 319–323.

[9] X. Tan, Fast computation of shortest watchman
routes in simple polygons, Inform. Process. Lett.,
77(1) (2001), 27–33.

[10] E. Welzl, The smallest rectangle enclosing a
closed curve of length π, manuscript, 1993. Avail-
able at http://www.inf.ethz.ch/personal/emo

/SmallPieces.html.

