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Cluster Connecting Problem inside a Polygon
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Abstract

The cluster connecting problem inside a simple polygon
is introduced in this paper. The problem is shown to be
NP-complete. A log n-factor approximation algorithm
is proposed.

1 Introduction

The visibility graph of the vertices of a simple polygon
plays important role in several geometric optimization
problems. A pair of points p, p′ inside a simple poly-
gon P are said to be mutually visible if the line segment
[p, p′] lies entirely inside P . The visibility graph of a sim-
ple polygon P is a graph G = (V, E), where the mem-
bers in V are the vertices of the polygon P . An edge
e = (vi, vj) ∈ E exists if and only if vi and vj are mu-
tually visible. The first output sensitive algorithm for
computing the visibility graph of the vertices of a simple
polygon P appeared in [5]; an O(n + k) time algorithm
is proposed, where n is the number of vertices in P , and
k = |E|. Later the problem is studied in depth and
several efficient algorithms are proposed [3, 10, 11]. An
useful variation of the visibility graph problem is stud-
ied recently in the literature [1], where a set of points Q

is given inside a simple polygon P , and the objective is
to compute the visibility graph of the point set Q. This
problem has applications in sensor network, where a set
of sensors is already deployed in a polygonal region, and
the objective is to establish/check connectivity among
the guards. An O(n + m log m log mn + k) time algo-
rithm for this problem is proposed in [1], where m = |Q|
and n = |P |. The same paper also deals with the prob-
lem of computing the range restricted visibility graph,
where each point q ∈ Q is assigned a range ρ(q). A point
q can see another point q′ ∈ Q, q′ 6= q if d(q, q′) ≤ ρ(q)
and the line segment [q, q′] lies entirely inside P . As a
result, here the visibility graph G′(V, E) is a directed
graph. The proposed algorithm for computing G′ runs
in O(n + m3/2 + k) time and O(n + m log m) space.

Note that, both the visibility graphs with infinite and
finite visibility ranges of the points in Q may not be
connected. We call each connected component a clus-
ter. In order to get a connected visibility graph, we will
consider the following problem.

∗National Institute of Technology, Durgapur, India
†Indian Statistical Institute, Kolkata, India
‡Institute of Radiophysics and Electronics, University of Cal-

cutta, India

Figure 1: Example of clusters inside a polygon

Cluster connecting problem: We are given a set of
m points Q = {q1, q2, . . . , qm} inside a simple poly-
gon P with n vertices. If the visibility graph
G = (V, E) corresponding to the set of points Q is
not connected, then compute the positions of plac-
ing a set Q′ of Steiner (extra) points inside P such
that (i) the visibility graph of Q∪Q′ is connected,
and (ii) |Q′| is minimum among all possible place-
ments of the Steiner point set Q′ satisfying condi-
tion (i).

The problem is useful in sensor network applications
where a set of sensors are distributed to monitor a polyg-
onal region. It may happen that the placed sensors can
not form a connected network either due to the obstruc-
tions of the polygonal boundary or due to the malfunc-
tion of some sensors. The objective is to place minimum
number of extra sensors to have a connected network.

The points in Q′ are called the Steiner guards. The
connected components of the visibility graph G of the
points in Q are called clusters. If G is connected, then
we have one single cluster with all the points in Q, and
no Steiner guard is required; in other words, Q′ = ∅.
However, if G is not connected, Q′ 6= ∅. An exam-
ple of the cluster connecting problem is shown in Figure
1. Here black shaded points form the set Q, and the
Steiner guards are shown by empty circles. The dotted
edges are intra-cluster edges, and dashed edges are the
connections of the cluster with the Steiner guards.

We show that a constrained version of the cluster
connecting problem is NP-complete, where the Steiner
guards are to be placed at the vertices of P . From now
onwards, we will use the term CCV-problem to denote
this constrained version of cluster connecting problem.
We also show that the CCV-problem can be mapped to
the node weighted Steiner tree problem. Thus, a log n-
factor approximation algorithm is easy to achieve.
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A very simple version of the CCV-problem is studied
long ago [2]. It is shown that, for a given instance of the
CCV-problem, testing whether there exists of a solution
with |Q′| = 1 can be solved in O(n + m) time.

2 Proof of NP-completeness

Consider a simple polygon P with n vertices {p1, p2, . . .,
pn} in clockwise order. An angle ∠pi−1pipi+1 is said
to be convex (resp. reflex) if it is less (resp. greater)
than 180o inside the polygon. In order to prove the
NP-completeness of the CCV-problem, we choose the
cooperative guard placement problem (CVG-problem in
short), stated below, and propose a polynomial time
reduction of an arbitrary instance of CVG-problem to
an instance of CCV-problem.

CVG-problem: Given a simple polygon P , identify
the minimum number of vertices Θ ⊂ P such that
if guards are placed at the vertices of Θ then each
point of the polygon P is visible to at least one
member in Θ, and the visibility graph of the mem-
bers in Θ is connected.

The decision version of CVG-problem is known to be
NP-complete [9]. It follows from the NP-completeness
proof of the decision version of the art gallery problem
using vertex guards [8].

It is easy to show that the decision version of our CCV-
problem is in NP, since (i) for any subset S of vertices of
P , we can compute the visibility graph of S∪Q in poly-
nomial time [1] and (ii) the connectedness of a graph
can be checked in polynomial time. We now propose a
polynomial time reduction of an arbitrary instance of
CVG-problem to an instance of CCV-problem.

2.1 Polynomial time reduction

For the sake of simplicity, we assume that no three ver-
tices of the polygon P are collinear. We compute the
visibility graph G = (V, E) of the given polygon P us-
ing the algorithm in [5]. We create an instance P ′ of
CCV-problem from the polygon P by creating notches
at vertices and edges of P , and placing one cluster inside
each notch. A vertex vi may satisfy at least one of the
following three properties with respect to the vertices
visible to it.

Π: Here an edge (vi, vj) exists in the visibility graph
of the polygon P such that the extension of the line
segment [vi, vj ] beyond vi goes outside P .

Πℓ: Here an edge (vi, vj) exists in the visibility graph of
P such that a finite extension of the line segment
[vi, vj ] beyond vi remains inside P , and vj is to the
left side of the bisector of the angle ∠vi−1vivi+1.

Πr: Here an edge (vi, vj) exists in the visibility graph of
P such that a finite extension of the line segment
[vi, vj ] beyond vi remains inside P , and vj is to the
right of the bisector of the angle ∠vi−1vivi+1.
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Figure 2: Modification of P at a convex vertex

Notice that, a convex vertex always satisfies only the
property Π. But a reflex vertex may simultaneously
satisfy one or more of the properties listed above. We
separately explain the modifications needed in the poly-
gon P for a vertex satisfying the above three properties.

The first step of our reduction algorithm is to ensure
that if we draw line parallel to each edge of P at a (suit-
ably chosen) small distance ǫ from the original edge of
P outside P , the generated polygon is simple, and is
an enlarged version of P . If this condition fails, we en-
large the region of the plane containing P by a constant
amount (independent of n) such that the aforesaid prop-
erty is satisfied. Both the checking and enlarging of P

(if necessary) need O(n) time.

The vertex vi satisfies the property Π: Let the
visibility edges incident at vi be ei

1, e
i
2, . . . e

i
ki

, where ki

is the number of visibility edges incident at vi; ei
1 and ei

ki

correspond to the visibility edges (vi, vi−1) and (vi, vi+1)
respectively.

Here, for each j = 1, 2, . . . ki, if we extend each ei
j be-

yond vi, it goes outside the polygon P . We make a very
small hole [ai, a

′
i] at the vertex vi and create a region Ai

bounded by a poly-chain [aiα
′
iu

i
ki

. . . ui
2u

i
1αiua′

i] drawn
outside P . The line segment [αi, α

′
i] is at a distance ǫ

from vi, and ui
j is the point of intersection of the vis-

ibility edge ei
j = (vi, vj) and the line segment [αi, α

′
i].

The choice of the hole [ai, a
′
i] at the vertex vi is done

as follows. Let v∗j and v∗∗j be the vertices visible to vi

corresponding to the visibility edges ei
j−1 and ei

j+1. We

join ui
j with v∗j and v∗∗j , and mark its intersection with

the edges (vi−1, vi) and (vi, vi+1) of P . These are re-
ferred to as the mark points. We compute mark-points
for each ui

j for j = 1, 2, . . . , ki. The point ai (resp. a′
i)

on the edge (vi−1, vi) (resp. (vi, vi+1)) is closer than
the closest mark point to the left (resp. right) of vi.
This ensures that for each j = 1, 2, . . . , ki, ui

j can see
no other vertex of P , except vj . We place a single point
cluster (darkly shaded) at αi. The concave corner at
u in the poly-chain bounding Ai is required to prevent
the direct visibility of the cluster at αi from the vertex
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Figure 3: Modification of P at a reflex vertex

vi (or equivalently at ai or a′
i). Figure 2 demonstrates

the updating of P around a convex vertex vi. The same
updating is done at each convex vertex of P . This mod-
ification works if vi satisfies Π, irrespective of whether
it is convex or reflex.

The vertex vi satisfies the property Πℓ: Let E i =
{ei

1, e
i
2, . . . , e

i
k} be the visibility edges incident at vi that

satisfies the property Πℓ. Let b∗ be the point on the edge
(vi−1, vi) closest to vi−1, that is visible to all the vertices
corresponding to the edges in E i. We choose a point b

on the edge (vi−1, vi) which is closer to vi than b∗, and
create a small hole [bi, b

′
i] on the edge (vi−1, vi) that con-

tains b. The width of this hole is determined in the same
way as we have created the hole [ai, a

′
i] around a vertex

satisfying the property Π. We choose a line λ parallel to
the polygonal edge (vi−1, vi) outside P and at a distance
ǫ from (vi−1, vi). Let wi

j is the point of intersection of
λ and the half-line [vj , b). We create a polygonal region
Bi with vertices {biwβi . . . wi

3w
i
2w

i
1β

′
ib

′
i}, where βi and

β′
i are also on the line λ, and ∠biwβi > 180o. The choice

of the interval [bi, b
′
i] says that wi

j can not see any ver-
tex of P other than vj . Finally, we place a single point
cluster (colored with “black”) at the vertex βi of Bi.
The reason of creating the concave angle at w is same
as that for the vertex u, that arrived while handing a
convex vertex vi.

The vertex vi satisfies the property Πr: Here, an
exactly similar notch Ci is to be added on the edge
(vi, vi+1) of the polygon P . The vertices of this notch
will be named as [cizγiz

i
1z

i
2z

i
3 . . . γ′

ic
′
i], where ∠cizγi >

180o.

In Figure 3, the vertex vi satisfies all the three properties
Π, Πℓ and Πr. The modifications necessary for all these
properties are incorporated in the figure.

Observation 1 If a vertex vi satisfies Π, then in order
to see the cluster at αi, one needs to place a Steiner
guard at either vi (i.e. at ai) or some vertex vj (at
aj if vj satisfies Π) such that (vi, vj) is an edge in the
visibility graph G.

If a vertex vi satisfies Πℓ (resp. Πr), then in order to see
the cluster at βi (resp. γi), one needs to place a Steiner

guard at ai or at some vertex vj (or at aj if vj satisfies
Π) such that (vi, vj) is an edge in the visibility graph G,
and vj is to the left (resp. right) of the perpendicular
bisector of the angle at vi.

Observation 2 If (vi, vj) is a visibility edge in P , then
if a Steiner guard is placed at a vertex ui

j or wi
j or zi

j

of P ′ (depending on whether vi satisfies Π or Πℓ or Πr

with respect to vj),

• it can see the vertex u
j
i (resp. w

j
i or z

j
i ) if vj sat-

isfies Π (resp. Πℓ or Πr) with respect to vi,

• it can not see any other vertex in the notch(es) at-
tached to the vertex vj ,

• moreover, it can not see any vertex in the notch(es)
attached to any other vertex of P .

Proof. Let the vertex vi satisfy the property Π (resp.
Πℓ or Πr) with respect to the vertex vj . The first part
follows from the fact that ui

j (resp. wi
j or zi

j) lies on the
line [vi, vj ].

The choice of the length of [ai, a
′
i] (resp. [bi, b

′
i] or [ci, c

′
i])

depending on whether vi satisfies Π (resp. Πℓ or Πr)
with respect to vj ensures that the cone ∠aiu

i
ja

′
i (resp.

∠biw
i
jb

′
i or ∠ciz

i
jc

′
i) does not contain any other vertex

in the notch of P ′ attached to the vertex vj in P . Thus,
the second part follows.

Regarding the third part, if (vi, vk) 6∈ E, then the ques-
tion of seeing ui

j (resp. wi
j or zi

j , which one is appro-
priate) to any vertex inside Ak or Bk or Ck does not
arise. �

Lemma 1 The polygon P is completely visible by K

number of cooperative guards if and only if the clusters
in P ′ can be connected by K + n∗ + nℓ + nr number of
Steiner guards, where n∗, nℓ and nr are number of ver-
tices satisfying the properties Π, Πℓ and Πr respectively.

Proof. Note that, we have n∗ + nℓ + nr number of
notches in P ′.

[Only if part] Let K cooperative guards can see all the
vertices and edges of the polygon P . None of them can
see any of the clusters put at the notches attached to the
vertices and edges in P . But they can see all the vertices
of the polygon P . As a result they can see at least
one vertex in the notch(es) of P ′ corresponding to each
vertex in P . We need to put a Steiner guard in one of the
vertices (which is visible from some cooperative guard)
in each notch to see the cluster present in that notches.
Thus, the clusters are connected by K + n∗ + nℓ + nr

number of Steiner guards.

[If part] Suppose all the single point clusters in the poly-
gon P ′ are connected using K + n∗ + nℓ + nr number
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of Steiner guards. If we ignore all the Steiner guards
in the notches, the remaining K Steiner guards are po-
sitioned at the vertices of P , since we have solved the
CCV-problem. Moreover, they can see all the vertices in
P since no Steiner guard in a notch can see the cluster
placed in the notch of some other vertex unless a Steiner
guard is put there. �

2.2 Complexity result

Lemma 2 Generation of P ′ from the given polygon P

needs O(n log n + |E|) time, where n is the number of
vertices in P and E is the set of edges in the visibility
graph of P .

Proof. Construction of the visibility graph of P needs
O(|E| + n) time [5]. The number of vertices inside the
notch(es) attached to each vertex is at most |Ev| + 12,
where Ev is the set of visibility edges incident at the
vertex v of P . Thus the computation of the notches is
linear in the number of edges of the visibility graph of
P . Surely, we assume that each arithmetic operation
for computing the notches in P ′ can be done in O(1)
time. The assumption is valid since ǫ is so chosen that
ǫ
n can be stored in the machine supported real number
format. �

Theorem 3 The CCV-problem is NP-complete.

3 Approximation algorithm

In this section, we propose a log n-factor approximation
algorithm for the CCV-problem. Consider an instance of
the CCV-problem, where P is the given polygon and Q

is the set of given points. We identify the clusters (con-
nected components) in Q by executing the algorithm in
[1]. Let C = {C1, C2, . . . , Cm} be the set of clusters.
Next, we construct a visibility graph G = (V, E), where
V consists of two types of nodes, namely terminal (VT )
and non-terminal (VN ). Each cluster contributes a node
in VT , and each vertex in P contributes a node in VN .
The edge set E = E1∪E2, where E1 = set of edges of the
visibility graph of P , and each edge in E2 connectes a
vertex in VT with a vertex in VN . An edge (vµ, vν) ∈ E2

implies that the polygonal vertex corresponding to the
node vν ∈ VN can see at least one point in the cluster
corresponding to the node vµ ∈ VT . This can easily be
computed using the same algorithm [1] with the point
set Q ∪P , where P is the set of vertices of the polygon
P .

We attach an weight “1” to each node in VT ∪VN . Now,
the CCV-problem reduces to finding a Steiner tree of
minimum cost, where the cost of a Steiner tree T is the
number of terminal nodes and Steiner nodes in the tree
T . Since all terminal nodes are present in T , the min-
imum cost Steiner tree corresponds to one having min-
imum number of Steiner nodes. Guha and Khullar [4]

proposed a polynomial time log k-factor approximation
algorithm for the node weighted Steiner tree problem
where each node is assigned a weight “1”, and K is the
number of terminal nodes in the graph. We use this al-
gorithm for our CCV-problem to get a solution with cost
at most log K × OPT , where K is the number of clus-
ters originally present in Q and OPT is the minimum
number of Steiner guards needed.

4 Conclusion

The cluster connecting problem is introduced in this pa-
per. The problem is shown to be NP-complete. A log n-
factor approximation algorithm is proposed using the
approximation algorithm for the node weighted Steiner
tree problem. It seems that getting a constant factor
approximation algorithm is possible exploiting the geo-
metric properties of the problem.
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