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On Polygons Excluding Point Sets

Radoslav Fulek∗ Balázs Keszegh† Filip Morić ‡ Igor Uljarević §

Abstract

By a polygonization of a finite point set S in the plane
we understand a simple polygon having S as the set
of its vertices. Let B and R be sets of blue and red
points, respectively, in the plane such that B ∪ R is in
general position, and the convex hull of B contains k
interior blue points and l interior red points. Hurtado
et al. found sufficient conditions for the existence of
a blue polygonization that encloses all red points. We
consider the dual question of the existence of a blue
polygonization that excludes all red points R. We show
that there is a minimal number K = K(l), which is a
polynomial in l, such that one can always find a blue
polygonization excluding all red points, whenever k ≥
K. Some other related problems are also considered.

1 Introduction

Let S be a set of points in the plane in general position,
i.e., such that no three points in S are collinear. A
polygonization of S is a simple (i.e., closed and non-
self-intersecting) polygon P such that its vertex set is
S. Polygonizations of point sets have been studied a lot
recently (e.g. [6, 3, 1]).

We say that a polygon P encloses a point set V if
all the points of V belong to the interior of P . If all
the points of V belong to the exterior of P , then we say
that P excludes V . Let B and R be disjoint point sets
in the plane such that B ∪R is in general position. The
elements of B and R will be called blue and red points,
respectively. Also, a polygon whose vertices are blue is
a blue polygon. A polygonization of B is called a blue
polygonization. Throughout the paper in the figures we
depict a blue point by a black disc, and a red point by
a black circle.

Let conv(X) denote the convex hull of a subset
X ⊆ R2. By a vertex of conv(X) we understand a
0-dimensional face on its boundary. We assume that all
the red points belong to the interior of conv(B), since
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we can disregard red points lying outside conv(B) for
the problems we consider. Let n ≥ 3 denote the number
of vertices of conv(B), k ≥ 1 the number of blue points
in the interior of conv(B), and l ≥ 1 the number of red
points (which all lie in the interior of conv(B) by our
assumption).

In [2, 5] the problem of finding a blue polygonization
that encloses the set R was studied, and in [5] Hurtado
et al. showed that if the number of vertices of conv(B)
is bigger than the number of red points, then there is a
blue polygonization enclosing the set R. Moreover, they
showed by a simple construction that this result cannot
be improved in general.

We propose to study a dual problem, where the goal
is to find conditions under which there is a blue polygo-
nization excluding the red points (Figure 1).

Our main result is the following theorem.

Theorem 1 Let B and R be blue and red point sets
in the plane such that B ∪ R is in general position and
R is contained in the interior of conv(B). Suppose l
is the number of red points and k the number of blue
points in the interior of conv(B). Then there exists k0 =
k0(l) = O(l4), so that whenever k ≥ k0, there exists a
blue polygonization excluding the set R.

Note that it is not a priori evident that such k0 exists.
We denote by K(l) the minimum possible value k0(l) for
which the above theorem holds. We also show that k0

in Theorem 1 must be at least 2l − 1.

Theorem 2 For arbitrary n ≥ 3, l ≥ 1 and k ≤ 2l − 2
there is a set of points B ∪ R (as before |B| = n + k,
|R| = l and the set of vertices of the convex hull of
B ∪ R consists of n blue points) for which there is no
polygonization of the blue points that excludes all the red
points.

We consider also a version of the problem where the
goal is to use as few inner blue points as possible so as
to form a blue polygon excluding the red set (Figure 2).
We obtain the following result.

Theorem 3 If |B| = n + k, |R| = l, k ≥ n3l2 and the
convex hull of B contains k blue vertices in its interior,
then there exists a simple blue polygonization of a subset
of B of size at most 2n that contains all the vertices of
the convex hull of B, and excludes all the red points.
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Finally, we treat the following closely related problem.
Given n red and n blue points in general position, we
want to draw a polygon separating the two sets, with
minimal number of sides. Our result is:

Theorem 4 Let B and R be sets of n blue and n red
points in the plane in general position. Then there exists
a simple polygon with at most 3dn/2e sides that sepa-
rates blue and red points.

Also, for every n there are sets B and R that cannot
be separated by a polygon with less than n sides.

Figure 1: A blue polygonization excluding all the red
points

2 Preliminary results

In this section we present several lemmas that we will
use throughout the paper. Let us recall that B and R
denote sets of blue and red points in the plane. We will
assume that they are in general position, i.e., the set
B ∪ R does not contain three collinear points. We will
need the following useful lemma by Garćıa and Tejel [4].

Lemma 5 (Partition lemma) Let P be a set of points
in general position in the plane and assume that
p1, p2, . . . , pn are the vertices of the conv(P ) and that
there are m interior points. Let m = m1 + · · · + mn,
where the mi are nonnegative integers. Then the con-
vex hull of P can be partitioned into n convex polygons
Q1, . . . , Qn such that Qi contains exactly mi interior
points (w.r.t. conv(P )) and pipi+1 is an edge of Qi.
(Some interior points can occur on sides of the poly-
gons Q1, . . . , Qn and for those points we decide which
region they are assigned to.)

The next corollary will be used as the main ingredient
in the proof of Theorem 3.

Corollary 6 If |B| = |R| = n and the blue points are
vertices of a convex n-gon, while all the red points are
in the interior of that n-gon, then there exists a sim-
ple alternating 2n-gon, i.e., a 2n-gon in which any two
consecutive vertices have different colors.

In the proof of Theorem 1 we will be making a poly-
gon by concatenating several polygonal paths obtained
by the following proposition, which is rather easy (and
whose proof we skip).

b4
b3
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b1

b6

b5

p6 p1

P

Figure 2: Alternating polygon using few inner blue ver-
tices

Proposition 7 Let S be a set of n points in the plane in
general position and p and q two points from S. Then
one can find a simple polygonal path whose endpoints
are p and q and whose vertices are the n given points.

In order to obtain by our method a bound on K(l)
(|R| = l) we need to take care of the situation, when the
convex hull conv(B) contains too many vertices. For
that sake we have the following proposition, which can
be established quite easily.

Proposition 8 There exists a subset B′ of B of size at
most 2l + 1, containing only the vertices of conv(B), so
that all the red points are contained in conv(B′).

3 Proof of the main result

The aim of this section is to prove the main result, which
is stated in Theorem 1, about sufficient conditions for
the existence of a blue polygonization that excludes all
the red points.

By a wedge with z as its apex point we mean a convex
hull of two non-collinear rays emanating from z. We
define an (l-)zoo Z = (B, R, x, y, z) (Figure 3(a)) as a
set B = B(Z) of blue and R = R(Z), |R| = l, red points
with two special blue points x = x(Z) ∈ B, y = y(Z) ∈
B and a special point z = z(Z) (not necessarily in B or
R) such that:

1. every red point is inside conv(B)

2. x, y are on the boundary of conv(B)

3. every red point is contained in the wedge W =
W (Z) with apex z and boundary rays zx and zy.

We denote by B∗ = B∗(Z) the blue points inside
W ′ = W ′(Z), the wedge opposite to W (Z) (i.e., W ′ is
the wedge centrally symmetric to W with respect to its
apex). We refer to the points in B∗ as to special blue
points. We imagine x and y being on the x-axis (with x
having smaller x-coordinate than y) and z being above
it (see Figure 3(a)), and we are assuming that when we
talk about objects being below each other in a zoo.
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A nice partition of an l-zoo is a partition of conv(B)
into closed convex parts P0, P1, . . . , Pm, for which there
exist pairwise distinct special blue points b1, . . . , bm ∈
B∗ (we call b0 = x and bm+1 = y) such that for every
Pi we have that (see Figure 3(b)):

1. no red point is inside Pi, i.e., red points are on the
boundaries of the parts

2. Pi has bi and bi+1 on its boundary

z

W ′

W

x y

B∗

(a)

b0 = x
b4 = y

b1

b2

b3

P0

P1
P2

P3

(b)

Figure 3: (a) 3-zoo, (b) Nice partition of 3-zoo into 4
parts

A short proof of the next proposition is omitted.

Proposition 9 Given a zoo Z with a nice partition, we
can draw a polygonal path using all points of B = B(Z)
with endpoints x(Z) and y(Z) s.t. all the red points are
below the polygonal path.

The proofs of the following two lemmas can be found
in the complete version of the article in the Electronic
Proceedings.

Lemma 10 Given an l-zoo Z, if B∗ = B∗(Z) contains
a blue y-monotone convex chain of size 2l − 1, then it
has a nice partition.

The next lemma is a variant of the previous one, and
it is the key ingredient in the proof of the main theorem
in this section.

Lemma 11 Given an l-zoo Z, if B∗ = B∗(Z) contains
at least Ω(l2) blue points, then it has a nice partition.

Having the previous lemma, we are in the position to
prove Theorem 1.

Proof. [Proof of Theorem 1.] First, by Proposition
8 we obtain a subset B′, |B′| = m, of the vertices of
conv(B) of size at most 2l + 1, so that R ⊆ conv(B′).
Let b′0, b

′
1, . . . , b

′
m−1 denote the blue points in B′ listed

according to their cyclic order on the boundary of
conv(B′). We distinguish two cases.

b′i

b′i+1

z

P ′

b′i−1

b′3

b′0

b′2

b′1

b′4

P ′

(a) (b)

Figure 4: Partition of conv(B)

1◦ conv(B′) does not contain Ω(l4) points in its in-
terior. It follows, that there is a convex region P ′ con-
taining Ω(l3) blue points, which is an intersection of
conv(B) with a closed half-plane T defined by a line
through two consecutive vertices b′i and b′i+1, for some
0 ≤ i < m (indices are taken modulo m), on the bound-
ary of conv(B′), such that T does not contain the in-
terior of conv(B′) (see Figure 4 (a)). Let B′′ denote
the set of vertices of conv(B′) except b′i and b′i+1. Ob-
serve that we have an l-zoo Z having B(Z) = B \ B′′,
R(Z) = R, b′i and b′i+1 as x(Z) and y(Z), respectively.
By the general position of B we can take z(Z) to be
a point very close to the line segment b′ib

′
i+1, so that

B∗(Z) contains Ω(l2) blue points. Thus, by Lemma 11
we obtain a nice partition of Z. Hence, by Proposition 9
we obtain a blue polygonal path Q having B\B′′ as a set
of vertices. The desired polygonal path is obtained by
concatenating the path Q with the convex chain formed
by the points in B′′ ∪ {b′i, b′i+1}.

b0

b1

b2

P ′

Figure 5: Forming a polygonization

2◦ conv(B′) contains Ω(l4) points in its interior.
Let Ri denote the intersection of R with the triangle
b′0b
′
ib
′
i+1, for all 1 ≤ i < m − 1. For each triangle

b′0b
′
ib
′
i+1 we consider the lines through all the pairs r

and b, such that b = b′0, b
′
i or b′i+1 and r ∈ Ri. For
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each i, 1 ≤ i < m − 1, these lines partition the trian-
gle b′0b

′
ib
′
i+1 into O(|Ri|2) 2-dimensional regions. Hence,

by doing such a partition in all the triangles b′0b
′
ib
′
i+1

we partition conv(B′) into O(
∑m−2

i=1 |Ri|2) = O(|R|2)
regions, each of them fully contained in one of the tri-
angles b′0b

′
ib
′
i+1. It follows that one of these regions, let

us denote it by P ′, contains at least Ω(l2) blue points
(see Figure 4 (b)). Clearly, P ′ is contained in a triangle
b′0b
′
ib
′
i+1, for some 1 ≤ i < m− 1.

For the convenience we rename the points b′0, b
′
i, b
′
i+1

by b0, b1, b2 in clockwise order. We apply Partition
Lemma (Lemma 5) on the triangle b0b1b2, so that we ob-
tain a partition of the triangle b0b1b2 into three convex
polygonal regions P ′0, P

′
1, P

′
2 (in fact triangles), such that

each part contains Ω(l2) blue points belonging to P ′∩P ′j ,
for all 0 ≤ j ≤ 2, and has bjbj+1 as a boundary segment.
We denote by P0, P1, P2 the parts in the partition of
conv(B), which is naturally obtained as the extension
of the partition of b0b1b2, so that Pj , Pj ⊇ P ′j , has bjbj+1

(indices are taken modulo 3) either as a boundary edge
or as a diagonal.

In what follows we show that in each Pj , 0 ≤ j ≤ 2,
we have an lj-zoo Zj , lj ≤ l, with bj as x(Zj) and bj+1

and y(Zj), respectively, and with Ω(l2) blue points in
B∗(Zj).

First, we suppose that there exists a red point in P ′j .
We take z(Zj) to be the intersection of two tangents t1
and t2 from bj and bj+1, respectively, to conv(R ∩ P ′j)
that have conv(R ∩ P ′j) and bjbj+1 on the same side.
Clearly, P ′ has to be contained in one of four wedges
defined by t1 and t2. However, if P ′ is not contained
in the wedge defined by t1 and t2, which has the empty
intersection with the line through bj and bj+1, either
Pj+1 or Pj−1 cannot have a non-empty intersection with
P ′ (contradiction). Thus, B∗(Zj) of Zj contains at least
Ω(l2) blue points.

Hence, we can assume that P ′j does not contain any
red point. In this case, by putting z very close to bjbj+1,
so that z ∈ b0b1b2, we can make sure, that the corre-
sponding wedge above the line bjbj+1 contains all the
blue points in P ′.

Thus, in every Pj , 0 ≤ j ≤ 2, we have Zj with bj and
bj+1 as x(Zj) and y(Zj), respectively, the set of blue
points in Pj as B(Zj), and the set of red points in Pj

as R(Zj). By using Proposition 9 on a nice partition of
Zj obtained by Lemma 11 we obtain a polygonal path
using all the blue points in Pj which joins bj and bj+1,
and which has all the red points in Pj on the ”good”
side. Finally, the required polygonization is obtained
by concatenating the paths obtained by Lemma 11 (see
Figure 5). �

4 Concluding remarks

Theorem 1 in Section 3 proves the existence of a to-
tal blue polygonization excluding red points if we have
enough inner blue points. We showed an upper bound
on K(l), the needed number of inner blue points, that
is polynomial, but likely not tight. We conjecture that
the upper bound is 2l−1, which meets the lower bound
in Theorem 2. If l ≤ 2 then a non-trivial case-analysis
shows that the conjecture holds. If finding the right val-
ues of K(l) for all l turns out to be out of reach, it is
natural to ask the following.

Question 1 What is the right order of magnitude of
K(l) ?

One could obtain a better upper bound on K(l), e.g.,
by proving Lemma 11 with a weaker requirement on
the number of blue points in W (Z), which we suspect
is possible.

Question 2 Does Lemma 11 still hold, if we require
only to have Ω(l) points in W (Z), instead of Ω(l2)?

Finally, the bounds we have on the minimal number
of sides for the red-blue separating polygon do not meet.

Problem 1 Improve the bounds n or/and 3dn/2e in
Theorem 4.
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