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Six-way Equipartitioning by Three Lines in the Plane
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Abstract

Let K be a convex body in the plane with area 1. It is
well-known that there exists three concurrent lines that
divide K into six regions, each with area 1/6. Probably
less well-known is the fact that three lines can never
partition K into seven regions, each with area 1/7. It
is also known that if three lines partition K into seven
regions, and if six of them have equal area, then it must
be the central, triangular region that has area differ-
ent from the other six. It is somewhat curious that the
main existence question for such a partitioning had re-
mained open. Here we settle this question by showing
that such partitions always exist and, in a certain sense,
are unique.

1 Introduction

In 1949 Buck and Buck [7] showed that for any convex
body K in the plane, there always exists three concur-
rent lines that equipartition K; that is, each of the six
sectors they define cuts off the same area in K. Courant
and Robbins [8] later gave a simple proof by continuity,
and there has followed a succession of interesting re-
sults [1], [2], [3], [4], [5], [6], [12], [13], [15], [16], [17],
[19], [20] about the possibilities/impossibilities of par-
titioning measures in various ways, facts that are con-
sequences of analysis, topology, and algebra (see espe-
cially Matoušek’s beautiful book on the Borsuk-Ulam
theorem [14]).

Here we reopen an apparently unexplored aspect of
partitioning a convex body with three lines. First, we
will assume A(K) = 1, where we write A(S) for the area
of the set S ⊂ R2. In general, three lines will divide the
plane into seven regions. The central, bounded one is a
triangle T that degenerates into a point if the lines are
concurrent. In [7] Buck and Buck also showed that no
convex set K can be partitioned by three lines into seven
regions, each with area 1/7. They then asked whether
there are partitions where six of the seven regions each
has area (1 − z)/6, and the seventh has area z; the
previous statement shows this is impossible for every
K when z = 1/7, and their original result shows it is
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always possible for every K when z = 0. Finally they
showed that if such a six-way partitioning of K did exist
for some z > 0, then it must be the central triangle T
that has area z.

They also stated the conjecture that if K has a six-
way equipartition with three lines, then A(T ) = z is at
most z0 = 1/49. This is the value that does occur when
K is, itself, a triangle; it is easily seen that when K is
a triangle, it may be six-way equipartitioned by lines
parallel to its own sides. The fact that NO convex body
K can have a six-way equipartition in which the central
triangle has A(T ) > z0 was later proved by Sholander
[18] (see also [9], [10], [11]). He thus showed the triangle
to be the extreme convex body K admitting a six-way
equipartitioning - it has the largest possible area in the
unequal region.

However the general existence question for six-way
equipartitions of planar convex bodies has remained
open since the original paper of Buck and Buck! This is
a surprising fact. We reopen the question here and elu-
cidate the existence of such partitions. To make things
concrete we give

Definition 1: Given a convex body K with A(K) = 1,
lines `1, `2, `3 form a six-way equipartition of K if

1. the points Pij = `i ∩ `j, i < j are in K,

2. the triangle T = ∆P12P13P23 has area z, and

3. each of the six regions of K \ T has area (1− z)/6.

The main new fact is

Theorem 1 Given a convex body K ⊂ R2 with A(K) =
1 and a unit vector v ∈ R2, there exists a unique trio of
lines that form a six-way equipartition of K, with one
of them having normal vector v.

Before this result, the basic question of the existence
had been open, except when z = 0.

According to Theorem 1, for each convex body K
and θ ∈ [0, 2π) there is a unique six-way equiparti-
tion of K where one of the lines has normal vector
v = (cos(θ), sin(θ)) and we write fK(θ) as the area t
of the central triangle in the partition. We can use this
function to characterize certain convex sets K. For ex-
ample f is identically zero if K is radially symmetric.
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Also, there is an interesting algorithmic problem
when seeking six-way partitions of n given points in gen-
eral position in R2; this is a variant of the original prob-
lem where we use counting measure instead of Lebesgue
measure for the “size” of a set. Finally, we can pose an
analogous partitioning problem where the object is to
partition a convex body K using three lines, but now
the goal is to have the area of the smallest region as
close as possible to the area of the largest region. We
conjecture that the triangle is the extreme convex body
for this property as well. These final two points will
be postponed for the journal version. Here we mainly
discuss Theorem 1 and the ideas used in its proof.

2 Sketch of the Proof

The theorem depends on continuity and a geometric
property of convex sets that may be of independent in-
terest (Lemma 4). Without loss of generality we may
take the given normal vector to be v = (1, 0), so one of
the three lines will be a vertical line which we denote
by l0. It will have equation x = t and we write l0(t) to
describe its position. We coordinatize R2 so that l0(0)
is the vertical line that bisects K (see Figure 1); i.e., K
has area 1/2 on both sides of l0.
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Figure 1: Three lines and seven regions. l0, l1 and l2 are
bisectors of K when t = 0.

We choose two other bisecting lines for K, l1 and l2,
both uniquely determined by the ham-sandwich theo-
rem to have the following properties: l1 has above it
1/3 of the part of K that is to the right of l0, and 2/3
of the part of K that is to the left of l0; l2 has above
it 1/3 of the part of K that is to the left of l0 and 2/3
of the part of K that is to the right of l0. This is the
initial configuration based on l0(t) when t = 0. If these

lines are concurrent, T is empty and we have a six-way
equipartition. The uniqueness argument will show there
is no other six-way equipartition where one line is ver-
tical.

Otherwise T 6= φ and without loss of generality we
may assume it lies to the left of l0 as shown in Figure 1.
In this case (t = 0) the seven regions shown in Figure
1 have areas A1(t), . . . , A6(t) and z > 0 (for the area
of T ). By construction, A1(0) = A2(0) = A3(0) =
1/6, A4(0) = 1/6 − z = A6(0), and A5(0) = 1/6 +
z > 1/6. Therefore there is no six-way equipartitioning
using l0(t), t = 0.

Next, we observe that if three lines (m0, m1 and m2)
have their pairwise intersections in K, they create a six-
way equipartition if and only if

(P1) Each line mi divides K into two parts: K−
i with

area α ≤ 1/2, and the other part, K+
i , with area

1− α;

(P2) For each i, K−
i is partitioned by the other two lines

into three regions of equal area.

Clearly, when m0, m1 and m2 satisfy both (P1) and
(P2), the central triangle T =

⋂3
i=1 K+

i .
As there is no six-way equipartition when t = 0 and

z = Area(T ) > 0, we translate vertical line l0 to l0(t),
t 6= 0, and write α < 1/2 for the area of K−

0 , the smaller
part of K cut off by by l0(t). By the ham-sandwich
theorem there is a unique pair of lines l1 and l2 that
satisfy the following invariants:

(I1) Area(l+1 ∩K−
0 ) = α/3; Area(l+1 ∩K+

0 ) = 2α/3.

(I2) Area(l+2 ∩K−
0 ) = 2α/3; Area(l+2 ∩K+

0 ) = 1−5α/3.

Here, l+i denotes the halfspace above li, i = 1, 2. The
region below l2 is the smaller part of K.

Its easy to verify the following statements (see e.g.,
Fig. 1, but think of t > 0 so K−

0 is on the right of l0):

Fact 1: If lines l1, l2 satisfy both invariants (I1) and
(I2), the trio automatically satisfies (P1).

Fact 2: It is also the case that if l1 and l2 meet within
K+

0 , then the trio l0, l1, and l2 will also satisfy (P2),
as long as A5 has the same area as A1: I1 and I2 imply
that A1, A2, A3 each have area α/3; if A5 also has area
α/3, the invariants imply that A4 and A6 do as well. In
this case, the lines form a six-way equipartition.

Fact 3: When l0, l1, l2 equipartition, T must have area
z = 1− 2α, α the area in K of the smaller halfspace of
each li.

These facts hold as well if t < 0.
We begin as in Figure 1 with l0(t), t = 0, the vertical

line bisecting K. We will move l0 continuously and for
each t, choose l1(t) and l2(t) to satisfy invariants I1

and I2. We consider all t for which l0(t) meets K and
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l1(t)∩l2(t) ∈ K. A basic fact in the argument - probably
already known - is

Lemma 2 The functions Ai(t), i = 1, . . . , 6 and z(t) =
Area(T (t)) are continuously differentiable.

The proof is elementary and left as an exercise.

Returning now to the situation shown in Figure 1 at
t = 0, lines l0, l1, l2 each bisect K, and l1 and l2 meet to
the left of l0. We will first argue (Lemma 3) that there
is no equipartitioning using l0(t) when t < 0. Next, let
R denote the x-coordinate of the right vertical tangent
to K. We will show that as t moves continuously from
0 toward R, there is a smallest t = t′ > 0 at which
A1(t′) = · · · = A6(t′). The last part of the proof of
Theorem 1 argues uniqueness showing that t′ is the only
value where all six areas are the same.

We first observe that there can be no six-way equipar-
tition when t < 0.

Lemma 3 Suppose l0(t), l1(t), l2(t) are bisecting lines
as in Figure 1, t = 0, and with the central triangle on
the left of l0. Then there is no six-way equipartition of
K using l0(t) if t < 0.

Proof: Fix t < 0, and move l0 to x = t, t > L, x = L
the left vertical tangent of K. In this case, K−

0 is on the
left of l0 and has area α < 1/2. If l1 and l2 dont meet
in K there is nothing to prove. Otherwise, if triangle
T (t) is again on the left of l0, the invariants imply that
A6(t) = α/3 − z(t) and A5(t) = α/3 + z(t), where z(t)
is the area of T (t). These areas can be equal only if
z(t) = 0, contradicting the assumption that T is on the
left of l0(t).

On the other hand suppose that triangle T (t) is on
the right of l0(t), t < 0. Lemma 2 implies that there
exists t′ ∈ (t, 0) where the three lines are concurrent.
The invariants imply this can occur only when all three
lines bisect K, clearly impossible if t′ 6= 0.

So we start with l0(t), t = 0, where it is the vertical
bisector of K, and continuously translate until t = R,
where it is the right vertical tangent to K. For each t
we maintain the invariants for l1 and l2, as long as they
meet in K. Using the same reasoning as in the proof of
Lemma 3, if T is on the left of l0(0), it remains on the
left as l0 moves to the right.

Initially, with T on the left of l0(0), the invariants
imply that A5(0) = 1/6 + z and that A1(0) = A2(0) =
A3(0) = 1/6. Therefore f(t) ≡ A5(t)−A1(t) is positive
at t = 0. We argue that there is a t∗ ∈ (0, R) for
which l1 and l2 meet on the boundary of K. Therefore
A5(t∗) = 0, so f(t∗) < 0. By the continuity of f there
must be a t ∈ (0, t∗) for which f(t) = 0, so by the earlier
Fact 2, l0, l1, l2 form a six-way equipartition. Finally,
we can show that A5, A1 and f are all decreasing, a

fact that guarantees the uniqueness of the equipartition.
A main tool behind these statements is the following
lemma, possibly of independent interest, and based on
the situation described in Figure 2.
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Figure 2: Lengths of segments of two cuts.

Lemma 4 Let K be a convex body of area 1, and let a
and b be two points on the boundary, in clockwise order,
so that the region in K above the line ab has area α <
1/2. Let c be between a and b (in clockwise order) and
d be points so that the region in K below the line cd
also has area α. These lines meet at a point o ∈ K,
and divide K into four regions: R1 above both lines; R3

below both lines; R2 above cd and below ab; and R4, as
in Figure 2. We have the following inequalities:

|ao|
|ab| +

|co|
|cd| ≥

Area(R4)
Area(R1) + Area(R4)

,

|bo|
|ab| +

|do|
|cd| ≥

Area(R2)
Area(R1) + Area(R2)

.

Also, the larger of the sums on the left hand side is
at least 1, and if one of them is 1, then both are.

Proof: Draw the lines ad and bc. If they are parallel,
then both sums are 1.

Otherwise, w.l.o.g, ad meets bc at some point p, as in
Figure 2. Join o and p and draw the line aq which is
parallel to bc and meets od at q. It is easy to check that

|bo|
|ab| +

|do|
|cd| =

|co|
|cq| +

|do|
|cd| >

|co|
|cd| +

|do|
|cd| = 1

so we have

|co|
|cd| =

Area(4pco)
Area(4pcd)

and
|ao|
|ab| =

Area(4pao)
Area(4pab)

.

If Area(4pab) ≥ Area(4pcd),

|ao|
|ab| +

|co|
|cd| ≥

Area(pcoa)
Area(pcoa) + Area(4ocb)

.
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By the convexity of K, R4 is contained in quadrilateral
pcoa, and 4ocb is contained in R1. Therefore

|ao|
|ab| +

|co|
|cd| ≥

Area(R4)
Area(R4) + Area(4ocb)

≥ Area(R4)
Area(R1) + Area(R4)

.

It is also clear that for the smaller sum, the inequality
becomes equality only when R4 is exactly the quadrilat-
eral pcoa (that is, 4pac ⊆ R4), and R1, R3 are triangles
4ocb and 4oad which have the same area.

3 Some Related Issues

According to Theorem 1, for every convex body K of
area 1, and for every θ ∈ (0, 2π] there is a unique trio
of lines that form a six-way equipartition of K where
(cos θ, sin θ) is normal to one of the lines. Writing A(T )
for the area of the central triangle in this partition, the
function

fK(θ) ≡ A(T )

is well defined. Since θ +π will give the same equiparti-
tion as θ we only need to consider f on (0, π]. It is easy
to see that f is always continuous and must be zero for
at least three distinct values of θ ∈ (0, π] (once for each
line in a concurrent six-way equipartition). By Sholan-
der’s results, max fK(θ) ≤ 1/49 for all K ∈ R2 with
area 1. In fact fK(θ) = 1/49 only when K is a triangle
and one side has normal (cos θ, sin θ).

It is not hard to prove the following statements:

Lemma 5 If K is a centrally symmetric convex body,
three lines in a 6-way equipartion must always be con-
current; i.e., fK(θ) ≡ 0.

Lemma 6 If K is symmetric about a line l, there exists
a concurrent 6-way equipartition where l is one of lines.

Finally f behaves nicely for regular polygons. Specif-
ically:

• For even n, fK(θ) ≡ 0 since the regular n-gon has
a center of symmetry.

• For odd n, the regular n-gon has n lines of sym-
metry, one through each vertex. If n is divisible
by 3, the concurrent 6-way equipartition with one
line incident with a vertex must have all lines of a
six-way equipartition incident with vertices. So we
have n distinct values where fK(θ) = 0.

• If n is odd and not divisible by 3, we have n con-
current 6-way equipartitions with one of the lines
incident with a vertex. Therefore all n concurrent
6-way equipartitions are different. So fK(θ) = 0
for at least 3n distinct θ’s in [0, π].
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[4] I. Bárány and J. Matoušek. “Simultaneous Partitions
of Measures by k−fans”. Discrete and Computational
Geometry 25 (3), 317-334 (2001).

[5] S. Bereg. “Equipartitions of Measures by 2-Fans”.
Discrete and Computational Geometry 34 (1), 87-96
(2005).

[6] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink.
Generalizing Ham-Sandwich Cuts to Equitable Subdi-
visions. Discrete and Computational Geometry 24, 605-
622 (2000).

[7] R. Buck and E. Buck. “Equipartitioning of Convex
Sets”. Math. Mag. 22 (4), 195-198 (1949).

[8] R. Courant and H. Robbins. What is Mathematics?
Oxford University Press, (1941).

[9] H. Eggleston. “Some Properties of Triangles as Ex-
treme Convex Curves”. J. London Math. Soc. 28, 32-36
(1953).

[10] H. Eggleston. Problems in Euclidean Space: Applica-
tions of Convexity. Pergamon Press, (1957).

[11] H. Eggleston. Convexity, Cambridge Tracts in Math.
and Math. Physics 47, Cambridge Univ. Press (1958).

[12] A. Kaneko and M. Kano. Balanced Partitions of Two
Sets of Points in the Plane. Comp. Geo.. Theory and
Application 13, 253-261 (1999).
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