
CCCG 2011, Toronto ON, August 10–12, 2011

On Finding Skyline Points for Range Queries in Plane

Anil Kishore Kalavagattu ∗ Ananda Swarup Das † Kishore Kothapalli ‡ Kannan Srinathan §

Abstract

We consider the dominating point set reporting prob-
lem in two-dimension. We propose a data structure for
finding the set of dominating points inside a given or-
thogonal query rectangle. Given a set of n points in the
plane, it supports 4-sided queries in O(log n+k), where
k is size of the output, using O(n log n) space. This work
can be of application when range queries are generated
using mobile devices with limited display capacity.

1 Introduction

Range searching is one of the widely studied topics in
computational geometry. As stated in [1], the fascina-
tion for range searching is due to the fact that it has
wide applications in geographic information systems,
CAD tools, database retrieval, etc. Informally range
aggregate is defined as follows: We are given a set S of
objects which can be points or line segments and the
like. We need to preprocess the data set into a data
structure such that given a query object q, we can ef-
ficiently return the objects in S ∩ q, the objects that
belong to both S and q. A careful note of the above
definition reflects that in a traditional range aggregate
query, an algorithm designer is more focused in find-
ing the result set efficiently and is not much bothered
about the size of the result set. But this cannot be true
any further. The advancement of technology has in-
troduced the era of information revolution which led to
information explosion. Imagine a user who is accessing
a database in a server through his mobile device whose
computing power as well as display model mechanism
is sufficiently limited. Computation can be outsourced
to server but returning the entire result set may not be
a clever decision. Rahul et al. [7] have proposed an
algorithm to return the top k answers of the result set.
But for this purpose, our points in the data set have
to be weighted by means of a preference function. But
in practice, finding a good preference function is not an

∗International Institute of Information Technology , Hyder-
abad, India, anilkishore@research.iiit.ac.in
†International Institute of Information Technology , Hyder-

abad, India, anandaswarup@gmail.com
‡International Institute of Information Technology , Hyder-

abad, India, kkishore@iiit.ac.in
§International Institute of Information Technology , Hyder-

abad, India, srinathan@iiit.ac.in

easy task. To address the issue, we borrow the concept
of skyline query from the database community.

2 Definitions

We are given a set of n points P = {p1, . . . , pn} in
R2. Assuming all the points have distinct coordinates
in each dimension, a point pi is said to dominate a point
pj if pi(x) > pj(x) and pi(y) > pj(y). The set P ′ (⊆ P)
of all the points, each of which is not dominated by any
other point in P is called the dominating set of P . They
are also called maximal elements, or maxima, of the
set P [2]. In the database terminology, these maximal
points are also known as skyline points. A skyline query
is then, given a set of points P , report the skyline points
of P . The skyline point set P ′ forms a sample (repre-
sentation) for the set P . In practice, often |P ′| < |P |.
However in the worst case scenario, |P ′| = |P |. More
information about skyline queries can be found in [6].

3 The Problem

Figure 1: The nodes filled black are not dominated by
any other point. a.) skyline of all the points. b.) skyline
of points in the query rectangle (dotted border).

In this work, we study the following problem.

Problem 1 We are given a set S of n points in R2.
We wish to pre-process S into a data structure such that
given an orthogonal query rectangle q, we can efficiently
report the skyline points of S ∩ q, where S ∩ q is the set
of points in both S and q.

Consider Fig 1.a There are ten points and among them
only four points are not dominated by any other point.
The same set of points are queried with an orthogonal
rectangle, as shown in Fig 1.b and its easy to see that

23rd Canadian Conference on Computational Geometry, 2011

the result can contain points which may not be in the
skyline point set obtained by considering all the points.
In rest of the paper, whenever we say size of result, we
actually mean number of skyline points inside the query
rectangle.

4 The General Algorithm

Figure 2: The query rectangle is q = [P1(x), P2(x)] ×
[P1(y), P2(y)] and the point P3 = (P3(x), P3(y)) is the
point with the largest x coordinate inside q.

A sketch of solution for the problem is as follows:

1. Let the set of points in the plane be S and the query
rectangle be q = [P1(x), P2(x)]× [P1(y), P2(y)].

2. Find the point with the largest x coordinate in S∩q.
Let the point be P3 = (P3(x), P3(y)). Add P3 to
the skyline point set.

3. Create a new rectangle q′ = [P1(x), P3(x)] ×
[P3(y), P2(y)] and update q ← q′. See Fig. 2.

4. Repeat the steps 2, 3 until we get a rectangle q′

such that S ∩ q′ = ∅. All the intermediate query
rectangles encountered are also shown in Fig. 2.

As can be seen, our algorithm depends on a solution
of range successor problem in plane. Range successor
problem is widely studied in literature and Yu et al. in
[9] proposed a data structure of size O(n) using which
range successor queries can be efficiently answered in
O(logn

log logn) time. Let k be the size of output, then a
solution which repeatedly uses range successor query in
step 2 above, will have a query time of O(k logn

log logn). We

propose a data structure of size O(n log n) using which
our algorithm will have a query time of O(log n + k).
Clearly using the proposed data structure, our algo-
rithm will perform better whenever k ≥ O(log n). Here
we considered the static version of the problem, where
the input points are fixed. A dynamic version of this
problem with O(log2 n+ k) query time using O(n log n)
space and O(log2 n) time per update is studied in [4].

5 The Data Structure

5.1 Preprocessing

The data structure is a standard layered range tree [3]
in which the main tree stores the points sorted by x-
coordinates. Each secondary structure is an array stor-
ing y-coordinates in sorted order (decreasing), along
with the corresponding point. This can be constructed
by carrying out merge sort using y-coordinates as keys.
In order to speed up query time, we use fractional cas-
cading [3] at the cost of storing additional pointers at
each node. Let w and v be the two children of µ. While
merging the secondary arrays Aw and Av to construct
Aµ, we create and store pointers as follows. Each in-
dex i of Aµ stores a pointer to the smallest value in Aw
which is greater than or equal to Aµ[i] and a pointer to
the largest value in Aw which is smaller than or equal
to Aµ[i]. Similarly, two more such pointers are stored
pointing to elements of Av. Also, each index of Aw and
Av has a pointer to its corresponding position in the par-
ent array Aµ. Each of these arrays A is preprocessed for
range maxima queries [10] such that given two indices
i, j of Aµ, we can find the point with maximum x coor-
dinate among the points whose y coordinates are stored
between Aµ[i] and Aµ[j] in O(1) time.

Lemma 1 The storage space needed for the data struc-
ture is O(n log n).The preprocessing time needed to con-
struct the data structure is O(n log n).

This data structure is similar to the data structure used
in [5] [8].

5.2 The Query Algorithm

Figure 3: The dark nodes are the ones to which the
segment [a, b] of the query q = [a, b]× [c, d] is allocated.

After we construct the data structure, the query algo-
rithm for a query rectangle q = [a, b]×[c, d] is as follows.

CCCG 2011, Toronto ON, August 10–12, 2011

1. The range of x-coordinates in [a, b] can be ex-
pressed as the disjoint union of l = O(log n) canon-
ical subsets. Let the canonical subsets of nodes
be ν1, ν2, . . . , νl from left to right in that order, as
shown in Fig. 3.

2. Find the node νsplit, which is the least common
ancestor of ν1 and νl. Find the largest sub-range of
y-coordinates ∈ [c, d] in Aνsplit using binary search
and store the indices of the two ends.

3. Process the canonical nodes in reverse order, start-
ing from νl back to ν1, as follows. Initialize i ← l,
ylow ← c and yhigh ← d.

4. Consider the node νi. Find the smallest index lt
and the largest index rt such that yhigh ≥ Aνi [lt] ≥
Aνi [rt] ≥ ylow. Note that the y-coordinates are
sorted in decreasing order in Aνi . This can be done
by following the pointers from Aνi+1

along the path
to the node νi. For the starting node νl, follow the
pointers from Aνsplit found in step 2.

5. Find the point with the largest x coordinate in
Aνi [lt . . rt] using a range maxima query. Let this
point be p′ and its y-coordinate be p′(y). Report
the point p′ and move rt to the position of the array
just before p′ and update ylow ← p′(y).

6. While there are points still left in Aνi [lt . . rt], i.e.,
lt ≤ rt, repeat the above step.

7. At this point, we processed the nodes
νl, νl−1, . . . , νi and also have two pointers to
the current limits on the y-coordinate [ylow, yhigh]
at νi.

8. Set i ← i − 1. If i ≥ 1, move to the node νi along
with the pointers and repeat from step 4 , else exit.

Lemma 2 The time needed for the query algorithm
above is O(log n+ k).

Proof : At each of the O(log n) levels of the tree, at
most two nodes are visited [3]. Among them, each
canonical node with all its x-coordinates ∈ [a, b] is vis-
ited at most once and each of the other nodes along the
path traversed is visited at most three times, first time
from its parent and at most one more time from each of
its two children �

Using the above lemma, we can now conclude the
section stating the following theorem.

Theorem 3 A set S of n points in R2 can be prepro-
cessed into a data structure of size O(n log n) such that
given an orthogonal query rectangle q, we can efficiently
report the set of points in S ∩ q not dominated by any
other point in S ∩ q in O(log n+ k) time where k is the
size of the output.

Our solution can be easily modified to report the top-
m sky line points having largest(or smallest) y(or x)
coordinates in O(log n+m) time.

6 Conclusion

In this work we studied the problem of finding the dom-
inating set of points inside a query rectangle. Our so-
lution is static and restricted to the plane. It will be
interesting to see dynamic version of this problem and
in higher dimensions.

7 Acknowledgements

We would like to thank the reviewers for their helpful
and positive comments which have improved the paper
and for pointing to [4] which handles the dynamic ver-
sion of the problem discussed in this paper.

References

[1] P. Agarwal, S. Govindrajan, S. Muthukrishnan. Range
Searching in Categorical Data: Colored Range Search-
ing on Grid. In Proceedings of ESA, pp. 17–28, 2002

[2] Jon Louis Bentley. Multidimensional divide-and-
conquer. Communications of the ACM, v.23 n.4, p.214-
229, April 1980

[3] M. de. Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf. Computational Geometry: Algorithms
and Applications. ISBN 3-540-65620-0, Springer Ver-
lag, 2000

[4] G. S. Brodal, K. Tsakalidis. Dynamic Planar Range
Maxima Queries. In Proc. 38th International Collo-
quium on Automata, Languages, and Programming, vol
6755 of LNCS, pp. 256-267. Springer Verlag, Berlin,
2011

[5] A. S. Das, P. Gupta, K. Srinathan, K. Kothapalli.
Finding Maximum Density Axes Parallel Regions for
Weighted Point Sets. submitted to CCCG 2011

[6] D. Kossmann, F. Ramsak, S. Rost. Shooting Stars
in the Sky: An Online Algorithm for Skyline Queries.
In Proc. International Conference on Very Large Data
Bases, pp. 275-286, 2002

[7] S. Rahul, P. Gupta, R. Janardan, K. S. Rajan. Effi-
cient top-k queries for orthogonal ranges. In Proc. In-
ternational Workshop on Algorithms and Computation,
Springer Verlag LNCS No. 6552, pp. 110–121

[8] Sanjeev Saxena. Dominance made simple. Information
Processing Letters, v.109 n.9, p.419-421, April, 2009

[9] C. C. Yu, W. K. Hon, B. F. Wang. Improved Data
Structures for Orthogonal Range Successor Queries.
Computational Geometry: Theory and Applications 44
, pp. 148– 159, 2011

[10] H. Yuan, M. Atallah. Data Structures for Range Mini-
mum Queries in Multidimensional Arrays. In Proceed-
ings of SODA, pp. 150–160, 2010

