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Open Problems from CCCG 2012

Joseph S. B. Mitchell∗

On Wednesday afternoon, August 8, 2012, we held an
open problem session at the 24th Canadian Conference
on Computational Geometry, in Charlottetown, Prince
Edward Island, Canada. The following is a description
of the problems presented and discussed, as scribed by
Joe Mitchell, with follow-up comments and details writ-
ten by the problem posers.

Zippered Volume
Anna Lubiw
University of Waterloo
alubiw@math.uwaterloo.ca

Given a zipper of length 1, find a simply con-
nected 2D shape, S, with perimeter 2 such that the
3D body obtained by “zipping up” the boundary of
S has maximum volume. The problem is also in-
teresting when S is restricted to be a polygon. See
Figure 1. For more information, see [16].

Figure 1: These unfoldings show that with a zipper of
length 1 we can make a tetrahedron of side length 1

3 and
volume 44×10−4, or a cube with side length 1

7 and volume
29 × 10−4. The start and end of the zipper are marked
with dots, and the two sides of the zipper travel in opposite
directions around the perimeter from the start to the end.

Many people worked on this problem during the
conference, including (but not limited to) Sarah
Cannon, Jean-Lou De Carufel, Thomas Hackl, Ste-
fan Huber, Denis Khromov, Matias Korman, Joe
Mitchell, Vinayak Pathak, Diane Souvaine, Selim
Tawfik, Ryuhei Uehara, Hamideh Vosoughpour.

Denis Khromov suggested focusing on the final
shape of the zipper in 3D, which leads to the prob-
lem of finding a curve C of length 1 that maximizes
the volume of the convex hull of C. It turns out
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that this problem has a long history. For a closed
curve in 2D, it is the isoperimetric problem (see the
wikipedia page) and the solution is a circle. For an
open curve in 2D, the solution is a semicircle. For
an open curve in 3D this is problem A28 in Croft,
Falconer, and Guy [5]. From the exposition there
and in the paper of Tilli [23] it seems that the prob-
lem is solved for curves that do not cross any plane
more than 3 times. In this case, the optimum so-
lution is a circular helix, x = sin(t), y = cos(t),
z = t/

√
2, as t goes from 0 to 2π, which gives vol-

ume 102× 10−4. See Figure 2.

Figure 2: Among a large class of curves, the maximum
volume of the convex hull, 102 × 10−4, is achieved by a
helix, with convex hull and unfolding as shown.

Some people at CCCG found (suboptimal) solu-
tions based on cones. Sarah Cannon, Diane Sou-
vaine and I found one with a volume of 84× 10−4,
where the curve consists of two semicircles lying in
orthogonal planes. The 3D body consists of two
half-cones where each half-cone has a semicircular
base and an apex above one endpoint of the semi-
circle. See Figure 3.

Characterize Output of Poisson-Disk Process
Scott Mitchell
Sandia National Lab
samitch@sandia.gov

(This might be considered a problem in spatial
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Figure 3: A volume of 84×10−4 is achieved by conjoined
half cones.

statistics, but there are ties to Delaunay refinement
and sphere packings.) Maximal Poisson-disk sam-
pling (MPS) is a particular statistical process for
generating a point cloud. The location for the next
point is chosen uniformly by area at random. A
point has an empty disk of radius r around it; if
a new point falls into a prior point’s disk, it is re-
jected and not added to the sample. The process
continues until the sampling is maximal: the entire
domain is covered by samples’ disks and there is no
room for another sample. Let the domain be a two-
dimensional square with periodic (toroidal) bound-
ary conditions, so there are no domain boundary
issues to consider. A math definition appears in
Ebeida et al. [9].

I am aware of no analytic description of what
the correct output of MPS is supposed to be. I
haven’t even seen an experimental characterization!
As such, currently for an algorithm to be correct,
it must be step-by-step equivalent to the statisti-
cal process. For an example algorithm like this, see
again [9]. A characterization of the output is impor-
tant because it would enable the design of more effi-
cient algorithms. A metaphor is that bubble-sort is
a process, but the characterization of its output as
“sorted order” allows the discovery of e.g. quicksort
to generate “sorted order” more efficiently.

The computer graphics community typically
measures the output of MPS by generating Fourier
transform pictures of the output. See “Point Set
Analysis” [17], for software and paper references
for a standard way of generating these pictures.

My understanding of PSA follows. The vectors
of distances between all pairs of points are calcu-
lated. The Fourier transform of the distance vec-
tors are taken and displayed, and a picture with os-
cillating dark and light rings is expected. Integrat-
ing this transform over concentric circles produces
a one-dimensional graph by increasing radius. (A
nuance is how to bin distances to generate smooth
pictures.) Figure 4 top shows the kinds of pictures
the Graphics community expects to see for MPS.

Two-radii MPS output 

•  Classic MPS 
Rf = Rc 

•  Two-radii MPS 
 2 Rf = Rc 

•  Rf = min center dist 
•  Rc =max Vor dist 

•  Uniform 
 R = 0 
non-maximal 

Figure 4: Point clouds visualized using PSA. Top is stan-
dard MPS, and middle two-radii MPS from CCCG 2012.
The bottom is a uniform random point cloud without in-
hibition disks, using about the same number of points.

Subproblem A: Can you characterize the PSA
pictures for MPS, especially Figure 4 top right?
What is the mean location and height of the peaks?
What is their standard deviation? Is the distribu-
tion around the mean normal? (Recall MPS is a
random process.) Perhaps an experimental charac-
terization is an easier place to start than an analytic
characterization.

Subproblem B: Is some variant of MPS better
than standard MPS for texture synthesis graphics
applications? At CCCG 2012 I presented a paper
“Variable Radii MPS.” The two-radii MPS variant
generates a spectrum with less oscillations; see Fig-
ure 4 middle. We suspect, but don’t know for sure,
if this is better for applications.

MPS produces a sphere packing, halve the disk
radii r then the disks do not overlap. This is a
well-spaced point set. Delaunay refinement also
produces a well-spaced point set. Sometimes the
PSA pictures of the output of Delaunay refinement
look similar to MPS, sometimes not, depending on



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

the target edge length, angle threshold, the use of
off-centers, etc.; see Figure 5.

Spectrum results for DR 

• Depends on target, queue order 
(Alex Rand experiments in progress) 
 

Figure 5: Delaunay refinement (Triangle) point clouds
from particular choices of target edge lengths and an-
gles, visualized using the PSA tool. Top left we see
patches of hexagonal packings, and bottom left we see
circular patterns of jumps in the point spacing. In the
Fourier transform, middle column, in the top the rings are
more pronounced than form MPS; in the bottom we see
bright spots which indicate preferential directions, mean-
ing nearby points are more dense in certain directions than
others. In the radial average, right, on both the top and
bottom we see accentuated spikes.

Subproblem C: characterize the PSA pictures
(Fourier spectrum) of the output of Delaunay re-
finement and its variants.

In computational geometry we often measure
point sets by the angles and edge length histograms
in a Delaunay triangulation of the points. These
histograms are different for MPS point clouds than
for Delaunay refinement output; see Figure 6.Uniform MPS vs. DR angles and edges 
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To do: study and contrast further!Figure 6: Computational Geometry measures of point
clouds. Edge length and angle histograms of DR and MPS
output. The minimum angle is the smallest angle of each
triangle. The edge length ratio is the ratio of the length
of Delaunay edges to the disc radius (MPS) or maximum
Delaunay circumradius (DR). In both MPS and DR, the
theories guarantee r < |e| < 2r.

Subproblem D: Characterize MPS output using
computational geometry measures of Delaunay tri-
angulation edge lengths and angle distributions.

Bonus subproblem E: do these problems for di-
mensions other than 2. Three to five dimensions
have some graphics applications.

Bonus subproblem F: characterize the effect of
the domain boundary, for non-periodic domains.

Partners: Alexander Rand, Mohamed Ebeida,
John Owens, Anjul Patney, Andrew Davidson,
Chandrajit Bajaj.

Hiding a Cycle
Paz Carmi
Ben Gurion University
carmip@cs.bgu.ac.il

Pat Morin had posed at CCCG’2007 the follow-
ing question: Is it possible that a polygonal cycle C
in 3D, with each edge axis-parallel, can project or-
thogonally onto each of the three coordinate planes
in such a way that each projection does not have a
cycle?

A solution to the problem appears on the cover
of the book [24]. However, the three projections in
this figure are (rectilinear) trees. Is it possible that
all three projections of C are paths?

Divide and Conquer
Jérémy Barbay
Universidad de Chile
jbarbay@dcc.uchile.cl

Adaptive Divide and Conquer: For sev-
eral problems, divide and conquer algorithms of
complexity O(n log n) and O(nk), for input size
n and some additional parameter k, yield algo-
rithms of complexity O(n(1+lg k)), or even better,
O(n(1 +H(n1, . . . , nk))):

• Selecting k elements of respective ranks
(r1, . . . , rk) in an unsorted array of n ele-
ments can obviously be done by sorting the
n elements in O(n lg n) comparisons. It can
also be performed in O(nk) comparisons by
using k times the median of median quick
select algorithm. Yet in 1981 Dobkin et
al. [7] showed that those k ranks can be
computed in O(n(1 + H(r1, r2 − r1, . . . , rk −
rk−1))) ⊂ O(n(1 + lg k)) comparisons and
overall time, and in 2006 Kaligosi et al. [13]
showed that those k ranks can be computed in
n(1 +H(r1, r2 − r1, . . . , rk − rk−1)) + o(n(1 +
H(r1, r2− r1, . . . , rk− rk−1)))+O(n) compar-
isons and O(n(1+H(r1, r2−r1, . . . , rk−rk−1)))
overall time. This result is input order oblivi-
ous instance optimal, in the sense that no al-
gorithm can perform better in the worst (and
average) input order, for any set of values.
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• In 1972, Graham [11] showed a reduction
of the computational complexity of the con-
vex hull to sorting, yielding a complexity of
O(n log n), which is optimal in the worst case
over instances composed of n points. Yet in
1973, Jarvis [12] showed that this was not opti-
mal on instances where the number h of points
in the convex hull is smaller than log n, via
an algorithm running in time within O(hn) ⊂
O(n2). It is not until 1986 that Kirkpatrick
and Seidel [15] solved the paradox through
an algorithm running in time within O(n(1 +
log h)), which analysis Afshani et al. [1] later
improved to O(n(1 + H(n1, . . . , nh))), where
H(n1, . . . , nh) ≡

∑h
i=1

ni

n log n
ni

≤ log2 h is
the minimal entropy of a certificate of the in-
stance.

• In 1983 Reif [19] described an algorithm com-
puting the minimal cut between two ver-
tices s and t of a planar graph over n vertices
in time O(n log2 n), using the fact that the
minimal cut corresponds to a cycle of min-
imal total weight in the dual of the planar
graph, which is intersected at most once by
the minimal path between s∗ and t∗. An-
other algorithm was known to perform in lin-
ear time when s and t share a face. In 2011,
Kaplan et al. [14] generalized this result to
yield an algorithm computing the minimal cut
in O(n(1 + log p)) operations, where p is the
minimum number of edges crossed by a curve
joining s to t, or equivalently the minumum
number of edges from the face s∗ to the face
t∗ in the dual of the planar graph.

• In 1952, Huffman showed that a prefix
free code of minimal redundancy for
n weighted symbols can be computed in
O(n lg n) algebraic operations (In 1976, van
Leeuwen showed that an equivalent code can
be obtained in linear time when the weights
are sorted.). In 2006 Belal et al. [3] claimed
an algorithm computing a code of equiva-
lent redundancy in O(nk) algebraic opera-
tions, where k is the number of distinct code-
lengths in a code of minimal redundancy.

• In an undirected planar graph of n vertices,
the maximum flow between two vertices s
and t can be computed in time O(n lg n) via
O(n) augmenting paths, which can be im-
proved to O(n(1 + lg k)) time when k faces
separate s and t. This result is optimal in the
worst case over instances for fixed values of n
and k.

We ask the following questions:

1. For which other problems are there at once
an algorithm working in time O(n lg n) and
an algorithm working in O(nk), for some pa-
rameter k, but no known algorithm running
in O(n(1 + lg k))?

2. For which other problems is there an algo-
rithm running in O(n(1 + lg k)), and a poten-
tial for an algorithm working in time O(n(1+
H(n1, . . . , nk))), where (n1, . . . , nk) is a vec-
tor describing the difficulty of the instance in
a finer way than k and H(n1, . . . , nk) is its
entropy?

3. For the problems where there is an algorithm
running in time O(n(1 +H(n1, . . . , nk))), can
this be improved to n(1+H(r1, r2−r1, . . . , rk−
rk−1))+o(n(1+H(r1, r2−r1, . . . , rk−rk−1)))+
O(n) comparisons and O(n(1 + H(r1, r2 −
r1, . . . , rk − rk−1))) overall time, as Kaligosi
et al. did for the multi select problem?

4. Can we identify a general principle at work
for those problems (e.g. Input Order Obliv-
ious Instance Optimal Complexity?), or are
there counter examples, for example in the
form of a problem for which there is an algo-
rithm running in time O(n lg n), an algorithm
taking advantage of particular cases running
in O(nk), but provably no algorithm running
in o(n min{lg n, k}) in the worst case over all
instances of fixed size n and fixed parameter
value k?

Minimum Interference Networks
Pat Morin
Carleton University
morin@scs.carleton.ca

Given a set S of n points in Rd, the goal is to
construct a connected network on S in order to
minimize the (maximum receiver-centric) interfer-
ence, which is the maximum depth in the set of
disks, centered on each pi ∈ S, of radius equal to
the length of the longest edge incident to pi.

In two and higher dimensions, achieving a better
than 5/4-approximation is NP-hard, as was shown
by Buchin [4]. In 1D, the problem is not known
to be NP-hard, yet the only result is a polynomial-
time O(n1/4)-approximation [20]. Thus, in any di-
mension, the following question is open: Does there
exist a polynomial time o(n1/4)-approximation al-
gorithm for constructing a minimum interference
network?

Another problem in this area involves bounding
the minimum-interference network of a point set
by the interference of its minimum spanning tree.
This is captured by the following conjecture: If
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the minimum spanning tree of a point set, S, has
interference k, then there exists a connected net-
work on S with interference O(

√
k). If proven, this

would resolve a question, from [6], on constructing
minimum-interference networks for random point
sets.

Generalized MST: 2-GMST
Bob Fraser
University of Waterloo
r3fraser@uwaterloo.ca

In the generalized (or “one-of-a-set” or “group”)
MST, we are given a collection of n finite sets of
points, S1, . . . , Sn, and the goal is to compute a
minimum-weight spanning tree that visits at least
one point of each set Si. Pop [18, Theorem 4.3]
described a 2δ-approximate algorithm for general-
ized MST, where δ is the maximum cardinality of
any imprecise vertex. The algorithm solves the lin-
ear programming relaxation of the integer program-
ming formulation of the problem, and then chooses
a spanning tree from the points in the solution.
This result follows the approximation framework
used by Slav́ık [21, 22] to establish approximation
algorithms for the Generalized Travelling Salesman
Problem and the Group Steiner Tree problem with
approximation factors of 3δ/2 and 2δ, respectively.

We ask here about the 2-GMST in the Euclidean
plane, in which each Si is a pair of points; in fact,
we are interested in the special case in which each
pair is vertical (i.e., each set Si consists of two
points having the same x-coordinate). For the case
that |Si| = 2, for all i, a 4-approximation is immedi-
ate from the general 2δ-approximation algorithm of
Pop mentioned above. Can geometry be exploited
to do better?

Note that the generalized problem is APX-hard
(Dror and Orlin[8]), and the restricted version de-
scribed here (2-GMST) is NP-hard [10, §10.4] (the
proof of hardness also rules out the possibility of
an FPTAS).

Two Problems
Pankaj Agarwal
Duke University
pankaj@cs.duke.edu

(a). Forcing a vertex minimum of a terrain.
Given a triangulated terrain with (piecewise-linear)
heigh function h(x, y), and given a vertex v of
the terrain, our goal is to compute a new terrain,
h′(x, y), such that v is a unique minimum of h′ and
h′ has no critical points other than v. The objec-
tive function is to select h′ to minimize ||h − h′||
(or (||h− h′||)2).

(b). Separating 3D polytopes (a classic problem).
Given two convex polytopes, P1 and P2 in <3, each
with a Dobkin-Kirkpatrick hierarchy, our goal is to
compute a separating plane, or report that none
exists, for P1 and P2. Known methods yield time
O(log m log n), where m and n are the complexities
of P1 and P2. Is it possible to improve the time
bound to O(log m + log n)?

Redrawing a Triangulation
Csaba Tóth
University of Calgary
cdtoth@ucalgary.ca

Given a triangulation T of n points in the plane.
Let ` be a line intersecting T , crossing edges
(e1, e2, . . . , ek), of T at points (p1, p2, . . . , pk), in
order along `. Now, consider another line, L, with
points (q1, q2, . . . , qk), in order along L. Is it always
possible to draw a triangulation T ′, equivalent (in
the sense of graph isomorphism) to T , with L cross-
ing the edges (e′1, e

′
2, . . . , e

′
k) (the mappings of the

ei’s) at the points (q1, q2, . . . , qk)?

Wavelets and the Golden Ratio
Braxton Carrigan
Auburn University
bac0004@auburn.edu

Given a triangulation in which every triangle is
isosceles. The goal is to find a subtriangulation by
adding new vertices along edges (while keeping the
cell complex property) in order to preserve the ratio
of side lengths (in Golden ratio).

Hamiltonian Tetrahedralization of a 3-Polytope
Joe Mitchell
Stony Brook University
Joseph.Mitchell@stonybrook.edu

I conjecture that every three-dimensional convex
polytope has a tetrahedralization (without adding
Steiner points) whose dual graph has a Hamiltonian
path. If true, then every finite point set in 3D has
a tetrahedralization (without Steiner points) that
is Hamiltonian.

For related work, see Arkin et al. [2].
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