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Abstract

Skeleton structures of objects are used in a wide variety
of applications such as shape analysis and path plan-
ning. One of the most widely used skeletons is the me-
dial axis, which is a thin structure centered within and
homotopy equivalent to the object. However, on piece-
wise linear surfaces, which are one of the most common
outputs from surface reconstruction algorithms, natu-
ral generalizations of typical medial axis definitions may
fail to have these desirable properties. In this paper, we
propose a new extension of the medial axis, called the
medial residue, and prove that it is a finite curve net-
work homotopy equivalent to the original surface when
the input is a piecewise linear surface with boundary.
We also develop an efficient algorithm to compute the
medial residue on a triangulated mesh, building on pre-
viously known work to compute geodesic distances.

1 Introduction

The medial axis of an object is a skeletal structure orig-
inally defined by Blum [1]. It is the set of points having
more than one closest points (under the Euclidean dis-
tance metric) on the boundary of the object. The medial
axis is centered within the object, homology equivalent
to the object if it is an open bounded subset of Rn [6],
and (at least) one dimension lower than that of the ob-
ject. These properties make the medial axis ideal for
many applications including shape analysis and robotic
path planning.
We are interested in defining a similar skeletal struc-

ture on a surface S (with boundary) that inherits the
properties of the medial axis. Such a structure could
then be used for applications such as shape analysis of
surface patches as well as path planning in non-planar
domains. We are particularly interested in the case
when S is piecewise smooth, which is more represen-
tative of typical outputs of discrete surface reconstruc-
tion algorithms (e.g., triangulated meshes) than globally
smooth surfaces.
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A natural approach would be to replace the Euclidean
distances in the medial axis definition by geodesic dis-
tances over S [12]. Interestingly, as we will show in
this paper (Section 3), several equivalent definitions of
the medial axis may yield different structures when S
is only piecewise smooth, and none of these definitions
guarantees the two essential properties of the medial
axis, namely being homotopy equivalent to the original
surface and codimension one.
In this paper, we propose a new extension of the me-

dial axis onto a piecewise linear surface S with bound-
ary, which we call the medial residue (Section 4), and
prove that the structure is a finite curve network that
is always homotopy equivalent to S (Section 5). We
also describe a quadratic-time algorithm to compute
this structure on a piecewise flat surface with bound-
ary embedded in Euclidean space (Section 6).

2 Background and Definitions

We assume the reader is familiar with classical defini-
tions of manifold topology, which can be found in books
such as [5, 9, 2]. We shall only review definitions that
are specifically relevant to our work.
A piecewise linear surface is a 2-manifold (with

boundary) with a piecewise linear structure, whose pre-
sentation consists of a finite number of triangles glued
together along with an intrinsic distance metric on each
triangle that is a linear map. Our algorithmic results
work in a more restricted class of piecewise flat surface,
where the piecewise linear structure comes from an em-
bedding of a triangulation of M into R3, so that each
triangle will be isometric to a triangle in R2.
Given a vertex v of a piecewise linear surface which is

contained in more than two triangles, let {f1, f2, . . . , fk}
be the faces to which v belongs, where θi(v) is the inte-
rior angle of fi at vertex v. The total angle is the sum of
all of these angles, θ(p) =

∑
i
θI(v). The curvature at v

is the value 2π−θ(p). A vertex is said to be convex, flat
or concave if its curvature is positive, zero or negative.
A curve (or path) is (the image of) a map p : [0, 1] →

M ; the length of the curve is generally the length of the
image in M . A curve is a geodesic if it is locally short-
est; in other words, no perturbation of the curve will
result in a shorter curve. On a piecewise linear surface,
geodesics and shortest paths are themselves piecewise
linear maps. We say a curve γ bisects a piecewise dif-
ferentiable curve X at time t if γ(t) ∈ X and the two
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Figure 1: Left: Illustration of left and right curve angles.
Right: at a concave vertex p, there may be infinitely
many geodesic paths to the boundary (such as γ1, γ2, γ3)
sharing a common outgoing direction, but only one of
them (γ2) can be straight. Shaded region is the shadow
rooted at p, made up of points whose shortest paths to
the boundary go through p.

angles bounded by γ and the tangent of X at γ(t) are
equal. The curve angles θl and θr of a point p on a
piecewise linear curve γ are the two angles to the left
and right of the curve at p, where θl + θr is the total
vertex angle at that point p (see Figure 1 left).
A curve γ is considered straight if for each point p ∈ γ,

the left and right curve angles are equal. This defini-
tion was introduced by Polthier and Schmies [10]. It is
worth noting that Polthier and Schmies used the term
“straight geodesic”, and not simply straight. However,
their straight geodesics might in fact not be geodesic (for
example, it can go through a convex vertex). In this pa-
per, the term straight geodesic will be used to denote
a curve that is both straight and geodesic. Note that
although there may be infinitely many geodesic paths to
the boundary that go through a concave vertex p, only
one of them is straight (see Figure 1 right). We call the
region made up of points whose shortest paths to the
boundary go through p the shadow rooted at p (shaded
region in Figure 1 right).

3 The Medial Axis

Let X be a shape in Euclidean space. There are a va-
riety of equivalent ways in which the medial axis of X
could be defined. We will consider the following three:

1. Most commonly, the medial axis is defined as
the set of points without a unique closest point
on the boundary of the shape: MCP = {x ∈
X |! unique y ∈ ∂X with d(x, ∂X) = d(x, y)}

2. Alternatively, the medial axis is the set of points
without a unique shortest path to the boundary of
the shape: MSP = {x ∈ X | ∃ shortest paths γ1 #=
γ2 from x to ∂X}

3. The medial axis is also the set of points with-
out a unique direction for shortest paths to the
boundary of the shape. We say two paths γ1 and
γ2 with γ1(0) = γ2(0) start in the same direc-
tion if there exists some ε > 0 such that for all

Figure 2: Example where MCP (red) is not homotopy
equivalent to the surface (but MSP and MSPD are).

t < ε, γ1(t) = γ2(t) (or the curves can be repa-
rameterized so that this holds): MSPD = {x ∈
X | ∃ shortest paths γ1, γ2 from x to ∂X that do
not start in the same direction}

We note that the above definitions are all equiva-
lent when X is a smooth manifold in any dimension,
but when X is piecewise smooth, these three defini-
tions yield different structures. More precisely, if X is
any path metric space (where distances are realized by
shortest paths), thenMCP ⊂ MSP andMSPD ⊂ MSP .
The fairly straightforward proof of this can be found in
the full version of this paper. More importantly, there
are situations where none of the three definitions sat-
isfy the desired properties of being one dimension lower
than and homotopy equivalent to X .
First, consider the heart-shaped surface in Figure 2,

which has an interior hole on top of a cylindrical pro-
trusion. Note that MCP excludes points like x in the
picture, which has a single closest point q on the bound-
ary (a C0 corner point) but two shortest paths to q that
go around the cylinder. As a result, MCP consists of
two disconnected components. On the other hand, x is
included in MSP and MSPD.
Next, consider the oval-shaped surface in Figure 3

(a). The surface has a concave vertex v with a large
negative curvature that happens to have two shortest
paths to two distinct boundary points (a non-generic
situation). Since each point in the shadow rooted at v
(shaded region in (b)) would have two distinct shortest
paths to the boundary, both MCP and MSP include
the 2-dimensional shadow region. On the other hand,
since any point in the shadow has a unique shortest
path direction (that follows the geodesic to v), the en-
tire shadow is excluded in MSPD, and MSPD has an
isolated vertex v that is disconnected from the rest of
MSPD.

4 The Medial Residue

We now define our structure, called the medial residue,
which is equivalent to existing definitions of the medial
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Figure 3: Top: a surface with a highly concave central
vertex (a) and a zoom-in view (b). Bottom: different
medial axis extensions (red): MCP and MSP are 2-
dimensional, MSPD has an isolated vertex, and MR is
1-dimensional and homotopy equivalent to the surface.

axis on a smooth manifold but possesses the desired
properties of homotopy equivalence and co-dimension
one on a piecewise linear surface. To make it clear that
we are considering surfaces and not arbitrary manifolds
from now on, we will use S instead of X to represent
the shape.
We note that our medial residue is well defined on

piecewise smooth manifolds, and that the majority of
our results hold in these settings. However, our proof
about homotopy and dimension holds only for piecewise
linear surfaces, although we conjecture that the proper-
ties hold in more general settings as well.
The starting point of our definition is MSPD, which

is more complete than MCP in our first example (Fig-
ure 2) and remains low dimension in the second example
(Figure 3). Our goal is to add low-dimensional compo-
nents to MSPD to restore the homotopy equivalence.
Observe that, in our second example, the disconnection
in MSPD takes place in the shadow rooted at a con-
cave vertex v ∈ MSPD, where the shortest paths from
a point x in the shadow to the boundary would agree
for some time and then diverge at v. Since we cannot
include the entire shadow, which is 2-dimensional, we
wish to keep one representative curve. A natural choice
of such curve would be one that is “centered” with re-
spect to the two diverging shortest paths at v. More
precisely,

Definition 1 The medial residue, MR consists of any
point x ∈ S such that either x ∈ MSPD or where there
are two distinct shortest paths from x to the bound-
ary, γ1 and γ2, parameterized by arc length, which
first intersect MSPD at v = γ1(t) = γ2(t) such that
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Figure 4: (a): illustration for the definition of a point
x ∈ MR \ MSPD. (b): a generic picture of MR at
a concave vertex with multiple shortest path directions
(solid line is MSPD and dotted lines are MR\MSPD).

γ = γ1([0, t]) = γ2([0, t]) is straight and bisects the an-
gle between the tangents of the two shortest paths from
v to the boundary that are nearest to γ on its left and
right side.

The definition for a point x ∈ MR \MSPD is illus-
trated in Figure 4 (a). Note that, by definition, every
point on the common segment γ of the shortest paths
from x to the boundary is also included in MR\MSPD.
In fact, MR\MSPD consists of straight geodesics that
bisect shortest path directions at concave vertices of
MSPD. Figure 4 (b) gives a generic picture of MR at
a concave vertex of MSPD. The multiple shortest path
directions divide the local neighborhood of the vertex
radially into sectors. Each sector is bisected either by
a curve in MSPD (solid red line), if the sector’s inte-
rior angle is less than 2π, or otherwise by a curve in
MR\MSPD (dotted red line).
Since any point in MR \ MSPD has two distinct

shortest paths, we have MSPD ⊂ MR ⊂ MSP . Since
both MSPD and MSP are equivalent when S is a
smooth manifold, this implies that our medial residue
is also equivalent to the other definitions we mentioned
earlier in a smooth manifold.

5 Medial Residue on Piecewise Linear Surfaces

In this section, we give sketches of proofs of Theo-
rem 2 and the related lemmas, showing that the me-
dial residue is homotopy equivalent to the original sur-
face; full proofs of each appear in the full version of this
paper. As previously mentioned, while we only prove
this for piecewise linear surfaces (the main focus of this
work), we conjecture that it also holds for piecewise
smooth surfaces and higher dimensional manifolds as
well.

Theorem 2 If S is a piecewise linear surface with
boundary then the medial residue of S is a finite graph
that is a deformation retract of S.
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To prove this theorem, we will construct a deforma-
tion retract by incrementally “eroding” from the bound-
ary, stopping at potentially interesting points along the
way. To begin this process, we must understand what
a neighborhood of the boundary of S looks like. Let
St = {x ∈ S | d(x, ∂S) ≥ t}; in other words, St is the
set of points whose distance from the boundary of S
is no less than t. The boundary of St is precisely the
points with distance t to ∂S.
Our first step is to prove that shortest paths to the

boundary are of finite complexity; in other words, they
cannot cross the triangulation an unbounded number
of times. If our PL surface is a flat embedding in R3,
this will follow easily since edges in the triangulation
are shortest paths (and no two shortest paths can cross
twice), but we must also have a bound for arbitrary PL
surfaces. We note that variants of the following proof
have been used in the normal surface community for at
least 20 years; however, we are unaware of any published
reference for such a bound on the number of possible
intersections, so we have included it for completeness.

Proposition 3 The number of intersections between
any shortest paths and the underlying triangulation of
an arbitrary PL-surface is ≤ |E|· 2π

δ
·maxe∈E

l(e)
ce

, where
δ is the minimum angle at any vertex of the triangula-
tion, l(e) is the length of the edge e, and c(e) is the
minimum distance between any pair of points on oppo-
site edges of the quadrilateral formed by the two faces
adjacent to an edge e.

Next, we want to understand what the boundary of
the surface looks like at each stage of the erosion pro-
cess. Locally, ∂St consists of a union of straight edges
and circular arcs. The straight edges correspond to
points whose shortest paths to the boundary do not pass
through a vertex of the triangulation, and the circular
arcs to points whose shortest paths pass through a ver-
tex. The previous proposition can be used to show that
there are finitely many arcs and lines segments in ∂St.

Lemma 4 Given a piecewise linear S, for all but
finitely many values of t, ∂St is a curve. In the cases
where ∂St is not a curve, ∂St is a graph.

Notice that MSPD consists of points that have mul-
tiple shortest paths directions to the boundary. The
above results allow us to bound the combinatorial types
of these shortest paths. The points equidistant from
the boundary in each shortest path direction are built
locally from lines segments and circular arcs. So in a
small neighborhood MSPD consists of the intersection
of two curves that are either lines or circles. Hence,
MSPD is built from lines, circles and parabolas. This
leads to the following result:

Lemma 5 If S is piecewise linear, then MSPD is a
finite graph.

Now we are ready to describe the deformation re-
tract, which immediately implies that MR is homotopy
equivalent to the original PL surface. We will build our
deformation retract based on an erosion process which
intuitively “pauses” at times {t1, . . . , tk}, where each ti
corresponds to one or more of these three possibilities:

1. There is a vertex v of the triangulation of S with
d(v, ∂S) = ti.

2. ∂Sti is not a disjoint union of curves but instead
forms a graph.

3. There is a vertex v of MSPD with d(v, ∂S) = ti.

The previous lemmas imply that the set of ti’s is fi-
nite. We will consider the sets Sti based on our level
sets at times {t1, . . . , tk} described above, as well as the
“slice” between two of our level sets, Ci = (Sti \ Sti+1

).
The following lemma actually shows how we can con-
struct the deformation retract.

Lemma 6 For each ti, Sti+1
∪ MR is a deformation

retract of Sti ∪MR.

Proof. Consider the slice region Ci between two level
curves. One of several cases could occur depending on
what happens on the boundaries of this region, as illus-
trated in Figure 5.
The first case is that portions of the boundary ∂Sti

meet at a convex corner. This is shown in Figure 5(a),
where the shortest paths are shown on the left and the
deformation retract on the right. At such a corner point
v, there is a segment of MSPD going from ∂Sti to
∂Sti+1

, which bisects the convex corner at v. Short-
est paths from points on this segment hit ∂Sti near v.
The deformation retract follows these curves.
The second case is that portions of the boundary ∂Sti

meet at a concave corner, see Figure 5(b). Note that
the concave corner v must contain a shadow rooted at v
where there is a cone of shortest paths going through v.
By definition of MR, if v ∈ MR then the bisector of
the shadow will be in MR\MSPD. However, the defor-
mation retract cannot simply follow the shortest paths
exactly, as this would not be continuous at v; observe in
the figure that points near v are taken to opposite sides
of the bisector and do not move continuously. Instead,
very near this point, the deformation retract will take
points to either the bisector or the full shadow, as shown
on the right in Figure 5(b). Note that the reparameter-
ization continuously deforms points from ∂Sti onto the
union of ∂Sti+1

and MR.
In the third case, consider points v ∈ ∂Sti where the

∂Sti is smooth. A single shortest path passes through
v. If v /∈ MR, the deformation retract simply follows
this path backwards, as shown in Figure 5(c). Other-
wise, if v ∈ MR, there is a segment of a bisector in
MR that contains v and continues in a direction that
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Figure 5: The shortest paths (black arrows), medial residue (red lines) and deformation retract (blue arrows) at the
points in the slice region.

is perpendicular to ∂Sti . In this situation (as in the
second case above), the shortest paths cannot be used
as a deformation retract as it would not be continuous
at that v. However, a similar re-parameterization as in
the second case can be used in a local neighborhood of
this portion of MR to construct a deformation retract,
as shown in Figure 5(d).
Note that it is possible that ∂Sti is a graph, in which

case the deformation retract described in the three cases
above can be applied to individual components of Ci

that are incident to a point v ∈ ∂Sti .
!

Finally, to show thatMR is a finite graph, we observe
that the set of concave vertices in MSPD and the set of
sectors around each such vertex are both finite on a PL
surface, which implies that MR \MSPD consists of a
finite number of straight geodesic paths that bisect these
sectors. Together with our previous lemma that MSPD

is a finite graph, this completes the proof of Theorem 2.

6 Algorithm

We next give an overview of our algorithm to compute
the medial residue on a piecewise flat surface with trian-
gle faces in R3, a commonly used discretization in many
applications. (Further details of the algorithm can be
found in the full version of the paper.)
We first recall some essential properties of shortest

paths on a triangulated surface S [7, 4]. We assume the
boundary ∂S consists of vertices and edges of some tri-
angle faces. A shortest path p that connects any point

x ∈ S to the boundary ∂S originates either from a ver-
tex or an interior point of an edge. In the latter case, p
is orthogonal to that originating edge. The path p may
go through some vertex of S, and if it does, both the
left and right curve angles made by p at that vertex are
greater than or equal to π. Away from the vertices, p
is a straight line segment after unfolding the triangles
that p goes through onto a plane. We call the last vertex
visited by p before reaching x the root of p. If p does
not go through any vertex, the root is the originating
vertex or edge on ∂S. The last edge sequence of p is the
(possibly empty) sequence of edges that p goes through
between the root and x.

The starting point of our algorithm is a subdivision of
each triangle face into regions where the shortest paths
have a common combinatorial structure. Given a face
f , a root r (being either a vertex or edge), and an edge
sequence E, a cell is the set of points x ∈ f such that
some shortest path from x to ∂S has root r and last
edge sequence E. The curve segments that bound the
cells (including both interior segments on f and the seg-
ments on the edges of f) form a graph, which is called
the subdivision graph. The subdivision can computed
using an easy extension of existing methods [8, 7, 4] in
O(n2 log n) time and O(n2) space.

Given the subdivision graph, our algorithm first iden-
tifies a subset of the graph as MSPD, then adds in the
bisectors to form the complete MR. Both steps can be
done in O(n2) time and space, where n is the number
of triangles of the surface. The overall process, taking
into account the creation of the face subdivision, can be
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done in O(n2 logn) time and O(n2) space. We assume
exact arithmetic is used to precisely compute distances
and angles.

6.1 Computing MSPD

First, we observe two relations between MSPD and a
subdivision graph:

Lemma 7 MSPD is a subset of the subdivision graph.

Lemma 8 Let h be a segment in the subdivision graph,
then either all interior points of h lie in MSPD or none
of them does.

The algorithm simply goes through each element (a ver-
tex or a segment open at its ends) of the subdivision
graph. For each element l, it picks an arbitrary point
x ∈ l and gathers shortest path directions at x by exam-
ining each incident cell of l. l is included in MSPD as
soon as two distinct shortest path directions are found.
Since computing the shortest path direction given a

cell takes constant time, the complexity of the algorithm
is proportional to the number of pairs of an element
and an incident cell, which is linear to the number of
elements in the subdivision graph. The algorithm uses
a data structure that maintains adjacency between cells
and subdivision graph elements, which is again linear to
the complexity of the graph. Hence computing MSPD

can be done in O(n2) time and O(n2) space.

6.2 Computing MR\MSPD

We use a tracing algorithm to compute bisectors that
make up MR \ MSPD. For each sector bounded by
shortest path directions at some concave vertex v ∈
MSPD, we start tracing a straight and shortest path
from v in the bisecting direction of the sector. Tracing
proceeds in a cell-by-cell manner, creating straight line
segments within each cell and maintaining straightness
while marching to the next cell. Tracing ends when the
path hits a segment or vertex of the subdivision graph
that belongs to MSPD.
Tracing within a cell involves intersecting a line with

several low-degree algebraic curves. Since the intersec-
tion of a cell with a shortest path to the boundary is
a single line segment [8], tracing in a cell can be done
in time linear to the number of segments of the cell.
Marching from one cell to the next can be done in con-
stant time using an adjacency structure. To bound the
complexity of tracing all bisectors, the key is to observe
that each cell can contain a non-trivial portion of at
most one bisector. This is because only a cell whose
shortest paths to the boundary are rooted at some ver-
tex may contain a bisector rooted at the vertex, and the
angle made by any two bisectors rooted at a vertex is
at least 2π. So the total tracing time for all bisectors

is bounded by the sum of number of segments over all
cells, which is O(n2). Tracing uses O(n2) space since
it adds only a constant amount of additional data per
element of the subdivision graph.
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