
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Set-Difference Range Queries

David Eppstein ∗ Michael T. Goodrich † Joseph A. Simons ‡

Abstract

We introduce the problem of performing set-difference
range queries, where answers to queries are set-theoretic
symmetric differences between sets of items in two ge-
ometric ranges. We describe a general framework for
answering such queries based on a novel use of data-
streaming sketches we call signed symmetric-difference
sketches. We show that such sketches can be realized
using invertible Bloom filters (IBFs), which can be
composed, differenced, and searched so as to solve set-
difference range queries in a wide range of scenarios.

1 Introduction

Efficiently identifying or quantifying the differences be-
tween two sets is a problem that arises frequently in
applications, for example, when clients synchronize the
calendars on their smart phones with their calendars
at work, when databases reconcile their contents after
a network partition, or when a backup service queries
a file system for any changes that have occurred since
the last backup. Such queries can be global, for in-
stance, in a request for the differences across all data
values for a pair of databases, or they can be localized,
requesting differences for a specific range of values of
particular interest. For example, clients might only
need to synchronize their calendars for a certain range of
dates or a pair of databases may need only to reconcile
their contents for a certain range of transactions. We
formalize this task by a novel type of range searching
problem, which we call set-difference range queries.

We assume a collection X of sets {X1, X2, . . . , XN},
containing data items that are each associated with a
geometric point and with a member of universe, U , of
size U = |U|. A set-difference range query is specified
by the indices of a pair of data sets, Xi and Xj , and by a
pair of ranges, R1 and R2, which are each a constant-size
description of a set of points such as a hyper-rectangle,
simplex, or half-space. The answer to this set-difference
range query consists of the elements of Xi and Xj whose
associated points belong to the rangesR1 andR2 respec-
tively, and whose associated elements in U are contained
in one of the two data sets but not both. Thus, we
preprocess X so that given ranges, R1 and R2, and

∗Dept. of Comp. Sci., U. of CA, Irvine, eppstein(at)uci.edu
†Dept. of Comp. Sci., U. of CA, Irvine, goodrich(at)uci.edu
‡Dept. of Comp. Sci., U. of CA, Irvine, jsimons(at)uci.edu

(a) (b)

Figure 1: Illustrating the set-difference range query
problem. The images in (a) and (b) have four major
differences, three of which are inside the common query
range. The image (a) is a public-domain engraving of
an astronomer by Albrecht Dürer, from the title page
of Messahalah, De scientia motus orbis (1504).

two sets, X1 and X2, we can quickly report (or count)
the universe elements in the set-theoretic symmetric
difference (R1∩X1) 4 (R2∩X2). The performance goal
in answering such queries is to design data structures
having low space and preprocessing requirements that
support fast set-difference range queries whose time
depends primarily on the size of the difference, not the
number of items in the range (see Figure 1). Examples
of such scenarios include the following.

• Each set contains readings from a group of sensors
in a given time quantum (e.g., see [3]). Researchers
may be interested in determining which sensor val-
ues have changed between two time quanta in a
given region.

• Each set is a catalog of astronomical objects in
a digital sky survey. Astronomers are often in-
terested in objects that appear or disappear in a
given rectangular region between pairs of nightly
observations. (E.g., see [22].)

• Each set is an image taken at a certain time and
place. Various applications may be interested in
pinpointing changes that occur between pairs of im-
ages (e.g., see [18]), which is something that might
be done, for instance, via two-dimensional binary
search and repeated set-difference range queries.

25th Canadian Conference on Computational Geometry, 2013

Query Type Query Time Space

Orthogonal: Standard [5] O(logd−1 n) O(n logd−1 n)

SD fixed m O(m · logd n) O(m · n logd−1 n)

SD variable m O(m · logd n) O(n logd n)

SD size est. O(logd+1 n logU) O(n logd n logU)

Simplex: Standard [17] O(n1−1/d(log n)O(1)) O(n)
SD fixed m O(m · n1−1/d(log n)O(1)) O(m · n)
SD variable m O(m · n1−1/d(log n)O(1)) O(n log log n)
SD size est. O(n1−1/d(log n)O(1) logU) O(n log n logU)

Stabbing: Standard [4] O(log n) O(n log n)
SD fixed m O(m · log n) O(m · n log n)
SD variable m O(m · log n) O(n log n)

SD size est. O(log2 n logU) O(n log n logU)
Partial Sum: Standard1 O(1) O(n)

SD fixed m O(m) O(m · n)
SD variable m O(m) O(n2)
SD size est. O(log n logU) O(n log n logU)

Table 1: The results labeled “Standard” are previously known results for each data structure. Results labeled “SD”
indicate bounds for set-difference range queries. Here d is the dimension of the query, m is the output size, and we
assume the approximation factor (1± ε) and failure probability δ are fixed.

1.1 Related Work

We are not aware of prior work on set-difference range
queries. However, Suri et al. [20] consider approximate
range counting in data streams. Shi and JaJa [19]
present a data structure for range queries indexed at
a specific time for data that is changing over time,
achieving polylogarithmic query times. If used for set-
difference range queries, however, their scheme would
not produce answers in time proportional to the output
size. For a survey of general schemes for range searching
data structures, see Agarwal [1].

1.2 Our Results

We provide general methods for supporting a wide class
of set-difference range queries by combining signed-
symmetric difference sketches with any canonical group
or semigroup range searching structure. Our methods
solve range difference queries where the two sets being
compared may be drawn from the same or different
data sets, and may be defined by the same or different
ranges. In our data structures, sets are combined in the
multiset model : two data items may be associated with
the same element of U , and if they belong to the same
query range they are considered to have multiplicity
two, while if they belong to the two different query
ranges defining the set difference problem then their
cardinalities cancel. The result of a set difference query
is the set of all elements whose total cardinality defined
in this way is nonzero.

Our data structures are probabilistic and return the

1 Using a standard solution to the partial sum problem.

correct results with high probability. Our running times
depend on the size of the output, but only weakly
depend on the size of the original sets. In particular,
we derive the results shown in Table 1 for the follow-
ing range-query problems (see the full version of this
article [11]for details):

• Orthogonal: Preprocess a set of points in Rd such
that given a query range defined by an axis-parallel
hyper rectangle, we can efficiently report or esti-
mate the size of the set of points contained in the
hyper-rectangle

• Simplex: Preprocess a set of points in Rd such that
given a query range defined by a simplex in Rd, we
can efficiently report or estimate the size of set of
points contained in the simplex

• Stabbing: Preprocess a set of intervals such that
given a query point x, we can efficiently report or
estimate the size of the subset which intersects x.

• Partial Sum: Preprocess a grid of total size O(n)
(e.g. an image with n pixels, or a d dimensional ar-
ray with O(n) entries for any constant d) such that
given a query range defined by a hyper-rectangle on
the grid, we can efficiently report or estimate the
sum of the values contained in that hyper-rectangle.

2 The Abstract Range Searching Framework

In order to state our results in their full generality it is
necessary to provide some general definitions from the
theory of range searching (e.g., see [1]).

A range space is a pair (X,R) where X is a universe
of objects that may appear as data in a range searching

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

problem (such as the set of all points in the Euclidean
plane) and R is a family of subsets of X that may be
used as queries (such as the family of all disks in the
Euclidean plane). A range searching problem is defined
by a range space together with an aggregation function
f that maps subsets of X to the values that should be
returned by a query. For instance, in a range reporting
problem, the aggregation function is the identity; in a
range counting problem, the aggregation function maps
a subset of X to its cardinality. A data structure for
the range searching problem must maintain a finite set
Y ⊂ X of objects, and must answer queries that take
a range r ∈ R as an argument and return the value
f(r ∩ Y). The goal of much research in range searching
is to design data structures that are efficient in terms
of their space usage, preprocessing time, update time
(if changes to Y such as insertions and deletions are
allowed), and query time. In particular, it is generally
straightforward to answer a query in time O(|Y |), by
testing each member of Y for membership in the query
range r; the goal is to answer queries in an amount of
time that may depend on the output size but that does
not depend so strongly on the size of the data set.

A range searching problem is said to be decomposable
if there exists a commutative and associative binary
operation ⊕ such that, for any two disjoint subsets A
and B of X, f(A∪B) = f(A)⊕ f(B). In this case, the
operation ⊕ defines a semigroup.

Many range searching data structures have the fol-
lowing form, which we call a canonical semigroup range
searching data structure: the data structure stores the
values of the aggregation function on some family F
of sets of data values, called canonical sets, with the
property that every data set r ∩ Y that could arise in a
query can be represented as the disjoint union of a small
number of canonical sets r1, r2, . . . , rK . To answer
a query, a data structure of this type performs this
decomposition of the query range into canonical sets,
looks up the values of the aggregation function on these
sets, and combines them by the ⊕ operation to yield
the query result. Note that this is sometimes called a
decomposition scheme. For instance, the order-statistic
tree is a binary search tree over an ordered universe in
which each node stores the number of its descendants
(including itself) in the tree, and it can be used to
quickly answer queries that ask for the number of data
values within any interval of the ordered universe. This
data structure can be seen as a canonical semigroup
range searching data structure in which the aggregation
function is the cardinality, the combination operation ⊕
is integer addition, and the canonical sets are the sets
of elements descending from nodes of the binary search
tree. Every intersection of the data with a query interval
can be decomposed into O(log n) canonical sets, and so
interval range counting queries can be answered with

this data structure in logarithmic time.
When the combination operation ⊕ has additional

properties, they may sometimes be used to obtain
greater efficiency. In particular, if ⊕ has the structure
of a group, then we may form a canonical group range
searching data structure. Again, such a data structure
stores the values of the aggregation function on a family
of sets of data values, but in this case it represents the
query value as an expression (±f(r1))⊕ (±f(r2))⊕· · · ,
where the canonical sets ri and their signs are chosen
with the property that each element of the query range
r belongs to exactly one more positive set than negative
set. Again, in the interval range searching problem, one
may store with each element its rank, the number of
elements in the range from −∞ to that element, and
answer a range counting query by subtracting the rank
of the right endpoint from the rank of the left endpoint.
In this example, the ranks are not easy to maintain
if elements are inserted and deleted, but they allow
interval range queries to be answered by combining only
two canonical sets instead of logarithmically many.

2.1 Signed Symmetric-Difference Sketches

Suppose that we want to represent an input set S in
space sub-linear in the size of S such that we can
compute some function f(S) on our compressed repre-
sentation. This problem often comes up in the stream-
ing literature, and common solutions include dimen-
sion reduction (e.g. by a Johnson-Lindenstrauss trans-
form [15]) and computing a sketch of S (e.g. Count-Min
Sketch [9]).

A sketch σS of a set S is a randomized compressed
representation of S such that we can approximately and
probabilistically compute f(S) by evaluating an appro-
priate function f ′(σS) on the sketch σS . This construct
also comes up when handling massive data data sets,
and in this context the compressed representation is
sometimes called a synopsis [14].

A sketch algorithm σ is called linear if it has a group
structure. That is, there exist two operators ⊕ and 	
on sketches σ such that given two multi-sets S and T ,

σS]T = σS ⊕ σT and σS\T = σS 	 σT

where] and \ are the multi-set addition and subtrac-
tion operators respectively.

For our results, we define two different types of linear
sketches. A Signed Symmetric-Difference Reporting
(SDR) sketch is a linear sketch that supports a function
report: given a pair of sketches σS and σT for two sets
S and T respectively, probabilistically compute S \ T
and T \ S using only information stored in the sketches
σS and σT in O(1+m) time, where m is the cardinality
of the output. A Signed Symmetric-Difference Cardi-
nality (SDC) sketch is a linear sketch that supports

25th Canadian Conference on Computational Geometry, 2013

a function count: given a pair of sketches σS and
σT for two sets S and T respectively, probabilistically
approximate |S 4 T | using only information stored in
the sketches σS and σT in time linear in the size of the
sketches.

3 Main Results

The main idea of our results is to represent each canoni-
cal set by an SDR or an SDC sketch. We implement our
signed symmetric-difference counting sketches using a
linear sketch based on the frequency moment estimation
techniques of Thorup and Zhang [21]. We implement
our signed symmetric-difference reporting sketches via
an invertible Bloom filter (IBF), a data structure in-
troduced for straggler detection in data streams [10].
IBFs can be added and subtracted, giving them a group
structure and allowing an IBF for a query range to be
constructed from the IBFs for its constituent canonical
sets. The difference of the IBFs for two query ranges
is itself an IBF that allows the difference elements to
be reported when the difference is small. To handle set
differences of varying sizes we use a hierarchy of IBFs of
exponentially growing sizes, together with some special
handling for the case that the final set difference size is
larger than the size of some individual canonical set.

Further details of the SDR and SDC sketches are
given in later sections. In this section, we assume the
existence of SDR and SDC sketches as defined above in
order to prove the following three theorems which are
the crux of our results listed in Table 1

Theorem 1: Suppose that a fixed limit m on the cardi-
nality of the returned set differences is known in advance
of constructing the data structure, and our queries must
either report the difference if it has cardinality at most
m, or otherwise report that it is too large. In this
case, we can answer set-difference range queries with
probability at least 1 − ε for any range space that can
be modeled by a canonical group or semigroup range
searching data structure. Our solution stores O(m)
words of aggregate information per canonical set, uses
a combination operation ⊕ that takes time O(m) per
combination, and allows the result of this combination
to be decoded to yield the query results in O(m) time. If
the data structure is updated, the aggregate information
associated with each changed canonical set can itself be
updated in constant time per change.

Proof. See [11] �

Theorem 2: Suppose that we wish to report set dif-
ferences that may be large or small, without the fixed
bound m, in a time bound that depends on the size
of the difference but that may depend only weakly on
the size of the total data set. In this case, we can

answer range difference queries with probability at least
1 − ε for any range space that can be modeled by
a canonical group or semigroup range searching data
structure. Our solution stores a number of words of
aggregate information per canonical set that is O(1)
per element of the set, uses a combination operation
⊕ that takes time O(m) (where m is the cardinality of
the final set-theoretic difference) and allows the result
of this combination to be decoded to yield the query
results in O(m) time. If the data structure is updated,
the aggregate information associated with each changed
canonical set can itself be updated in logarithmic time
per change.

Proof. See [11]. �

Theorem 3: Suppose that we wish to report the cardi-
nality of the set difference rather than its elements, and
further that we allow this cardinality to be reported
approximately, within a fixed approximation ratio that
may be arbitrarily close to one. In this case, we can
answer range difference queries with probability at least
1 − ε for any range space that can be modeled by
a canonical group or semigroup range searching data
structure. Our solution stores a number of words of
aggregate information per canonical set that has size
O(log n logU), uses a combination operation ⊕ that
takes time O(log n logU) and allows the result of this
combination to be decoded to yield the query results in
O(log n logU) time.

Proof. See [11]. �

4 Invertible Bloom Filters

We implement our SDR sketches using the invertible
Bloom filter (IBF) [10], a variant of the Bloom filter [6]
for maintaining sets of items that extends it in three
crucial ways that are central to our application. First,
like the counting Bloom filter [7, 13], the IBF allows
both insertions and deletions, and it allows the number
of inserted elements to far exceed the capacity of the
data structure as long as most of the inserted elements
are deleted later. Second, unlike the counting Bloom
filter, the IBF allows the elements of the set to be
listed back out. And third, again unlike the counting
Bloom filter, the IBF allows false deletions, deletions of
elements that were never inserted, and again it allows
the elements involved in false deletion operations to be
listed back out as long as their number is small. These
properties allow us to represent large sets as small IBFs,
and to quickly determine the elements in the symmetric
difference of the sets, as we now detail.

For the remainder of this paper, we assume without
loss of generality that each element x is an integer. An

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

IBF supports several simple algorithms for item inser-
tion, deletion, and membership queries; for a review of
these basic details of the IBF see [11].

In addition, we can take the difference of one IBF,
A, with a table TA, and another one, B, with table TB ,
to produce an IBF, C, with table TC , representing their
signed difference, with the items in A\B having positive
signs for their cell fields in C and items in B \A having
negative signs for their cell fields in C (we assume that
C is initially empty). This simple method is also shown
in [11].

Finally, given an IBF, which may have been produced
either through insertions and deletions or through a
subtract operation, we can list out its contents by
repeatedly looking for cells with counts of +1 or −1
and removing the items for those cells if they pass a
test for consistency. This method therefore produces a
list of items that had positive signs and a list of items
that had negative signs, and is shown in [11]In the case
of an IBF, C, that is the result of a subtract(A,B,C)
operation, the positive-signed elements belong to A \B
and the negative-signed elements belong to B \A.

4.1 Analysis

In this section, we extend previous analyses [10, 12] to
bound the failure probability for the functioning of an
invertible Bloom filter to be less than a given parameter,
ε > 0, which need not be a constant (e.g., its value could
be a function of other parameters).

Theorem 4: Suppose X and Y are sets with m ele-
ments in their symmetric difference, i.e., m = |X 4 Y |,
and let ε > 0 be an arbitrary real number. Let A
and B be invertible Bloom filters built from X and Y ,
respectively, such that each IBF has λ ≥ k + dlog ke
bits in its gSum field, i.e., the range of g is [1, 2λ),
and each IBF has at least 2km cells, where k >
dlog(m/ε)e + 1 is the number of hash functions used.
Then the listItems method for the IBF C resulting from
the subtract(A,B,C) method will list all m elements of
X 4 Y and identify which belong to X \ Y and which
belong to Y \X with probability at least 1− ε.

Proof. [11]. �

To avoid infinite loops, we make a small change to
listItems, forcing it to stop decoding after m items
have been decoded regardless of whether there remain
any decodable cells. This change does not affect the
failure probability and with it the running time is always
O(mk).

5 Frequency Moment Estimation

We implement our SDC sketches using frequency mo-
ment estimation techniques. Let x be a vector of length

U , and suppose we have a data stream of length m,
consisting of a sequence of updates to x of the form
(i1, v1), . . . , (im, vm) ∈ [U]× [−M,M] for some M > 0.
That is, each update is a pair (i, v) which updates the
ith coordinate of x such that xi → xi + v.

The frequency moment of a data stream is given by

Fp =
∑
i∈[U]

xpi = ‖x‖pp.

Since the seminal paper by Alon et al. [2], frequency
moment estimation has been an area of significant re-
search interest. Indeed the full literature on the subject
is too rich to survey here. Instead, see e.g. the recent
work by Kane et al. [16] and the references therein.
Kane et al. [16] gave algorithms for estimating Fp,
p ∈ (0, 2). Their algorithm requires O(log2(1/δ)) time
per update and O(δ−2 log(mM)) space. However, faster
results are known for estimating the second frequency
moment F2 with constant probability. Thorup and
Zhang [21] and Charikaret al. [8] independently improve
upon the original result of Alon et al. [2], to achieve an
optimal O(1) update time using O(δ−2 log(mM)) space.

Given a sparse vector X of length m with coordinates
bounded by [−M,M], we can estimate ‖X‖22 by treat-
ing it as a data stream and running the algorithm of
Thorup and Zhang. The algorithm computes a sketch
SX of X, of size O(δ−2 logmM) such that ‖SX‖22 is
within a factor of O(1 ± δ) of ‖X‖22 with constant
probability. We can improve the probability bound
to any arbitrary O(1 − ε) by running the algorithm
O(log(1/ε)) times independently to produce O(log(1/ε))
independent sketches SXi, and taking the median of
‖SXi‖pp. This strategy takes O(log(1/ε)) time to process
each non-zero element in X, and the space required is
O(δ−2 log(1/ε) log(mM)).

Furthermore, each sketch is linear, and therefore we
can estimate the frequency moment of the difference
of two sparse vectors X and Y by subtracting their
sketches; ‖SX − SY ‖22 is within a O(1 ± δ) factor
of ‖X − Y ‖22 with constant probability, and we can
maintain O(log(1/ε)) independent sketches to achieve
probability O(1− ε).

Now, suppose we want to estimate the Hamming
distance between two sets. We treat each set as a sparse
bit-vector and use the fact that the Hamming distance
between two bit vectors is equivalent to the squared
Euclidean distance, which is just the second frequency
moment of the difference of the vectors. Then we can
apply the above strategy for sparse vectors to produce
O(log(1/ε)) sketches for each set in O(log(1/ε)) time per
element, and we subtract all O(log 1/ε) pairs of sketches
in O(δ−2 log(1/ε) logU) time. Finally we compute the
second frequency moment of each sketch and take the
median over all estimations in O(log 1/ε) time.

We summarize this strategy in the following theorem.

25th Canadian Conference on Computational Geometry, 2013

Theorem 5: Let 0 < ε < 1 and 0 < δ < 1 be arbitrary
real numbers. Given two sets, X and Y , taken from a
universe of size U , we can compute an estimate m̂ such
that

(1− δ)|X 4 Y | ≤ m̂ ≤ (1 + δ)|X 4 Y |,

with probability 1 − ε, using a sketch of size
O(δ−2 log(1/ε) logU) The preprocessing time, includ-
ing the time required to initialize the sketch is
O(δ−2 log(1/ε) logU+(|Y |+ |X|) log(1/ε)) and the time
to compute the estimate m̂ is O(δ−2 log(1/ε) logU).

References

[1] P. K. Agarwal. Range Searching. In J. E.
Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages
575–598. CRC Press, Inc., 1997.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147,
1999.

[3] M. Basseville. Detecting changes in signals and
systems—A survey. Automatica, 24(3):309–326,
1988.

[4] J. L. Bentley. Solution to Klee’s Rectangle
Problem. Unpublished manuscript, 1977.

[5] J. L. Bentley and J. B. Saxe. Decomposable
searching problems I. Static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980.

[6] B. H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[7] F. Bonomi, M. Mitzenmacher, R. Panigrahy,
S. Singh, and G. Varghese. An improved
construction for counting Bloom filters. In Proc.
14th Eur. Symp. on Algorithms, volume 4168 of
LNCS, pages 684–695. Springer-Verlag, 2006.

[8] M. Charikar, K. Chen, and M. Farach-Colton.
Finding frequent items in data streams. In
P. Widmayer, F. T. Ruiz, R. M. Bueno,
M. Hennessy, S. Eidenbenz, and R. Conejo,
editors, ICALP, volume 2380 of Lecture Notes in
Computer Science, pages 693–703. Springer, 2002.

[9] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and
its applications. J. Algorithms, 55(1):58–75, April
2005.

[10] D. Eppstein and M. T. Goodrich. Straggler
Identification in Round-Trip Data Streams via
Newton’s Identities and Invertible Bloom Filters.
IEEE Trans. on Knowledge and Data
Engineering, 23:297–306, 2011.

[11] D. Eppstein, M. T. Goodrich, and J. A. Simons.
Set-difference range queries. Arxiv report,
arXiv:1306.3482 [cs.DS], June 2013.

[12] D. Eppstein, M. T. Goodrich, F. Uyeda, and
G. Varghese. What’s the difference? Efficient set
reconciliation without prior context. In Proc.
SIGCOMM, 2011.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[14] P. B. Gibbons and Y. Matias. Synopsis data
structures for massive data sets. In R. E. Tarjan
and T. Warnow, editors, SODA, pages 909–910.
ACM/SIAM, 1999.

[15] D. M. Kane and J. Nelson. Sparser
johnson-lindenstrauss transforms. In D. Randall,
editor, SODA, pages 1195–1206. SIAM, 2012.

[16] D. M. Kane, J. Nelson, E. Porat, and D. P.
Woodruff. Fast moment estimation in data
streams in optimal space. In L. Fortnow and S. P.
Vadhan, editors, 43rd ACM Symp. on Theory of
Computing (STOC), pages 745–754, 2011.

[17] J. Matoušek. Efficient partition trees. Discrete
Comput. Geom., 8(3):315–334, October 1992.

[18] R. Radke, S. Andra, O. Al-Kofahi, and
B. Roysam. Image change detection algorithms: a
systematic survey. IEEE Trans. Image
Processing, 14(3):294–307, March 2005.

[19] Q. Shi and J. JaJa. A new framework for
addressing temporal range queries and some
preliminary results. Theor. Comput. Sci.,
332(1-3):109–121, February 2005.

[20] S. Suri, C. D. Tóth, and Y. Zhou. Range counting
over multidimensional data streams. Discrete
Comput. Geom., 36(4):633–655, 2006.

[21] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation. In J. I. Munro, editor,
SODA, pages 615–624. SIAM, 2004.

[22] D. G. York, J. Adelman, J. John E. Anderson,
S. F. Anderson, et al. The Sloan digital sky
survey: technical summary. The Astronomical
Journal, 120(3):1579, 2000.

	Introduction
	Related Work
	Our Results

	The Abstract Range Searching Framework
	Signed Symmetric-Difference Sketches

	Main Results
	Invertible Bloom Filters
	Analysis

	Frequency Moment Estimation

