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Grid Proximity Graphs: LOGs, GIGs and GIRLs
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Abstract

This paper discusses three types of proximity graphs
called LOGs, GIGs and GIRLs, defined on unit grids.
We show that it can be decided in linear time whether
a LOG graph is a GIG graph. We also show that it is
NP-complete to recognize LOGs and GIGs, and explore
the relationship between these graph classes and their
properties. Enumeration results and open problems are
also presented.

1 Introduction

Consider an m × n unit grid and define on this grid a
limited outdegree grid directed graph, or LOG graph, as
follows: the vertices are the mn vertices of the unit grid,
the underlying edges are a subset of the unit grid edges
such that each edge has unit length and each vertex has
outdegree at most one. In other words, each vertex can
point to at most one of its neighbors in the underlying
grid. See Figure 1 for an example of a 3×4 LOG graph.
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Figure 1: A LOG graph with 12 vertices.

Let G = (V,E) be an m× n LOG graph with vertex
set V and edge set E. For each vertex u in V , let N(u)
denote the set of the vertices of G that have unit dis-
tance from u in the underlying grid. We call N(u) the
potential neighbors of u.

One way to obtain a LOG graph is to make a one-
to-one assignment of the labels 1, 2, . . . ,mn to the mn
vertices of the grid, then include a directed edge (u, v)
if the label at v is greater than the label of u and the
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greatest among all the labels of N(u). This construction
motivates the following definition, where we denote the
label of vertex u by L(u).

Definition 1 A Greatest Increase Grid directed graph
or a GIG graph is a LOG graph in which the vertices
can be labeled with distinct integers 1, 2, . . . ,mn such
that (u, v) ∈ E if and only if v ∈ N(u), L(v) > L(u)
and L(v) > L(w) for all w ∈ N(u), w 6= v.

See Figure 2 for an example construction of a 3 × 3
GIG graph. In [2], a GIG graph is interpreted as a
representation of a discrete 3-dimensional search space
in which the vertices of G are the states, and L(u) is
the utility of the state. A hill-climbing algorithm with
initial state u would succeed in finding the global max-
imum state if and only if there is a directed path from
u to that state.
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Figure 2: (a) A random labeling of the vertices of a 3×3
grid, and (b) a GIG graph generated from the labeling.

In this paper, we present an alternative interpretation
of a GIG as a representation of a folded map. An m×
n map is a rectangular piece of paper that is divided
into mn unit squares by a m × n square grid on the
paper. The edges of the grid on the paper (not on the
boundary of the paper) are called creases. A map can
be folded only along the creases. Figure 3(a) shows a
2×3 map and it has seven creases, three horizontal and
four vertical.

A famous open problem in map folding posed by Jack
Edmonds asks whether it can be decided in polynomial
time whether a map can be folded into a unit square or
not [4]. Suppose that a map can be folded into a unit
square. Then in such a folded state, there is a linear
ordering of the faces of the map from top to bottom [6]
as shown in Figure 3(b).
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Figure 3: (a) A 2 × 3 map with the faces labeled, (b)
the map folded on a unit square.

We represent each face of the map as a fixed vertex of
a GIG G depending on the row and column of the face
as shown in Figure 4(a). We then label the vertices of
the GIG G as shown in Figure 4(b), where each vertex of
G gets a label depending on its height from the plane on
which the faces are stacked, and add the directed edges
according to the definition of a GIG graph. A directed
edge (u, v) in this graph G denotes that u is below v in
the stack of faces and v is the topmost among all the
neighbors of u.
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Figure 4: (a) The faces of the map in Figure 3(a) shown
as vertices of G, (b) labeling of the vertices G according
to the ordering in Figure 3(b), (c) another labeling of
the same GIG G which causes the paper to self-intersect.

Now, suppose a GIG G is given that represents a pos-
sible linear ordering of the faces of a map. Depending
on the labeling of the vertices of G, we might or might
not get a linear ordering of the faces that is valid. Fig-
ures 4(b) and (c) show two different labelings of the
same GIG associated with a 2 × 3 map. Although the
labeling of Figure 4(b) gives the valid linear ordering
for the folded state in Figure 3(b), the ordering from
Figure 4(c) cannot be obtained.

Figure 5(a) and (b) show a 2 × 4 map and a GIG
representing a possible linear ordering of its faces. In
this GIG, the faces f0,2 and f1,3 must receive the labels
7 and 8, respectively. For this reason, any labeling of
this GIG gives an ordering of the faces of the map such
that the paper would have to self-intersect.
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Figure 5: (a) A 2× 4 map with the faces labeled, (b) a
GIG that gives no linear ordering.

The rest of the paper is organized as follows. Sec-
tion 2 gives an algorithm to decide whether a given LOG
graph is a GIG graph. Section 3 presents an algorithm
to generate all possible labelings of the vertices of a GIG
graph. In Section 4, we show that it is NP-complete to
decide whether a graph is a LOG or a GIG. Section 5
and 6 give generalizations and variations. Section 7 con-
cludes the paper.

2 Recognizing GIG graphs

Since the set of GIG graphs on an m×n grid is a proper
subset of the set of LOG graphs on the same size grid
(e.g., edge-free LOG graphs are not GIG graphs), we are
interested in deciding whether a given LOG graph is a
GIG graph. Here, we give a polynomial time algorithm
to solve this decision problem. The algorithm rests on
the construction of a new graph that represents a set of
inequalities implied by the edges in G. We define this
new graph as follows:

Definition 2 The augmented graph G = (V, E) of a
LOG graph G = (V,E) is a directed graph that satisfies
the following conditions.

(a) V = V and E ⊂ E.

(b) If there is an edge from u to v in G, then G also has
edges from all other potential neighbors of u to v. In
other words, (w, v) ∈ E for each w ∈ N(u), w 6= v.

(c) If the outdegree of u is 0 in G, then for every w ∈
N(u), there must be an edge (w, u) in E.

Figure 6 shows an example of the augmented graph
of GIG graph on a 3× 3 grid.

If a G is an augmented graph of a LOG graph that
is a GIG graph, then G can be reconstructed from the
labeled grid vertices of the GIG. Thus the labeled ver-
tices provide a geometric and compressed representation
of G.

Theorem 3 Let G be a LOG graph with mn vertices
and let G be the augmented graph of G. Then G is a
GIG graph if and only if G is acyclic.
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Figure 6: (a) A GIG graph on a 3× 3 grid, and (b) its
augmented graph.

Proof. If G is a GIG graph then there exists a labeling
of the vertices of G such that every vertex points to
its biggest potential neighbor that has a bigger label
than the vertex itself in the grid embedding of G. Then
by the definition of augmented graphs, each directed
edge (u, v) in G denotes that v > u. Suppose there
is a directed cycle v1, v2, . . . , vk, v1 in G. Then we get
v1 < v2 < . . . < vk < v1, which is a contradiction.
Therefore, G is acyclic.

We now assume that the augmented graph G is
acyclic. Then we can get a topological sort [3] of the ver-
tices of G and we assign the resulting labels 1, 2, . . . ,mn
to the vertices of G. We now show that any of these
labelings satisfies the definition of GIG graphs. Let u
be a vertex in G. We have to consider two cases:

(a) G contains an outgoing edge (u, v) in G. Then in the
augmented graph G, we have an edge (w, v) for each
w ∈ N(u), where w 6= v. Thus, all the potential
neighbors of u receive smaller index than v.

(b) There is no outgoing edge from u in G. Then all its
potential neighbors points to it in G and therefore
they all receive smaller index than v.

Therefore, the labeling of G obtained above satisfies
the definition of GIGs and hence G is a GIG graph. �

3 Generating all the Labelings

In this section, we give an algorithm to generate all
possible labelings of the vertices of a GIG graph since a
GIG graph can have multiple labelings (see Figure 7).
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Figure 7: Two labelings of the same GIG graph.

Pruesse and Ruskey [7] gave an output sensitive algo-
rithm to generate all possible linear extensions of a given
poset. Let P be a poset and let E(P) be the set of all
linear extensions of P. Then their algorithm generates
all linear extensions in time O(|E(P)|), which results in
constant amortized time. We can use this algorithm to
generate all possible labelings of a given GIG graph in
constant amortized time. Here we give a sketch of a
simpler recursive algorithm which suffices for our pur-
pose.

Let G be the given GIG graph with n vertices and
let G be the augmented graph of G. Then G must be
a directed acyclic graph. Since there are no cycles in
G, there must be at least one vertex in G that has no
incoming edges. We denote by sources the vertices with
no incoming edges in G. We now label any of the sources
with the least available index from 1, . . . , n. Let the
source be v and label of the source be l(v) = i. We then
remove v from G and recurse the procedure for G \ v,
where the least available index is i + 1. A pseudocode
of our algorithm LabelGIG is given below. The initial
call is LabelGIG(G, 1).

Algorithm 1: LabelGIG(G, i)

1 S is the set of all the sources in G
2 if G = ∅ then
3 print the labeling.
4 return.

5 for each v ∈ S do
6 l(v) = i
7 LabelGIG(G \ v, i + 1)

4 Complexity of Embedding a GIG on a Grid

In this section, we show that it is NP-complete to deter-
mine whether a given abstract graph is a LOG graph.
We also show that the recognition problem remains NP-
complete for GIGs.

A formal definition of the LOG recognition problem
is given below.

Problem : LOG-Recog

Instance : Two integers m,n > 0 and a planar di-
rected graph G with mn vertices such that the maxi-
mum degree of G is less than or equal to four and each
vertex has outdegree less than or equal to one.

Question : Does G have a plane rectilinear embed-
ding on an m× n integer grid?

We reduce the 3-Partition problem to LOG-Recog
to prove the NP-hardness. The 3-Partition problem
is described as follows.
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Problem : 3-Partition

Instance : A set of integers S = {x1, x2, . . . , x3p},
where p > 0, and an integer B > 0 such that

∑3p
i=1 xi =

pB and B/2 > xi > B/4, 1 ≤ i ≤ 3p.

Question : Can S be partitioned into p disjoint sets
such that each set contains exactly three integers that
sum up to B?

We use a very similar construction as Dolev et al. [5].
We create a directed frame tree as shown in Figure 8(b)
from the frame tree of Dolev et al. shown in Figure 8(a).
We choose the degree four vertex r as the root and direct
each edge from the child node to the parent node.
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Figure 8: (a) The frame tree used by Dolev et al. [5],
and (b) the corresponding directed frame tree.

We now prove the NP-completeness of LOG-Recog.

Theorem 4 LOG-Recog is NP-complete.

Proof. If a rectilinear embedding of G is given on
an m × n grid, it can be checked in polynomial time
whether each edge has unit length. Thus the prob-
lem is in NP. To prove that it is NP-hard, take an
instance S = {x1, x2, . . . , x3p} of 3-Partition, where∑3p

i=1 xi = pB and B/2 > xi > B/4, 1 ≤ i ≤ 3p, and
construct an instance of LOG-Recog from the instance
of 3-Partition as follows.

First assume that p is even. Create a directed frame
tree T with (2p + 3)(2B + 3)− pB vertices as shown in
Figure 8(b). Then create a directed path of xi vertices
for each of the integers xi ∈ S, 1 ≤ i ≤ 3p. The graph
G containing T and all the 3p directed paths has (2p +
3)(2B + 3) vertices. Finally, choose m = 2p + 3 and
n = 2B + 3. We now show that the given instance of
the 3-Partition problem has a solution if and only if
G has a rectilinear embedding on an m×n integer grid.

First assume that the instance of 3-Partition has a
solution, so S can be partitioned into p disjoint sets
S1, S2, . . . , Sp such that each of the sets has exactly
three integers that sum to B. From Lemma 6 of [5],
T has only two possible embeddings on an m× n grid,

and in each of the cases there are p holes of B grid points
each. Therefore, for each Sj , 1 ≤ j ≤ p, lay the paths
corresponding to the integers in Sj in one hole and get
a rectilinear embedding of G.

Now assume that G has an embedding on the integer
grid. Since any embedding of T leaves p holes of B grid
points and the number of grid points is equal to the
number of vertices in G, each of the holes must contain
three paths that have B vertices in total. Take the
integers corresponding to the paths in a hole to form a
subset. In this way we get a partition of S into p disjoint
subsets as required.

Now assume that p is odd. Create a directed frame
tree T with (2(p+1)+3)(2B+3)−(p+1)B vertices and
the 3p directed paths representing 3p integers as before.
We also create a directed path of B vertices as shown
in Figure 9. In this case G contains (2p + 5)(2B + 3)
vertices and hence, we take m = 2p+5 and n = 2B+3.
As in the previous case, it can be proved that the given
instance of 3-Partition has a solution if and only if G
has a rectilinear embedding on an m×n integer grid. �

r

Figure 9: The directed frame tree and the directed path
of B vertices when p is odd.

We now define the GIG recognition problem.

Problem : GIG-Recog

Instance : Two integers m,n > 0 and a planar di-
rected graph G with mn vertices such that the maxi-
mum degree of G is less than or equal to four and each
vertex has outdegree less than or equal to one.

Question : Does G have a plane rectilinear embed-
ding on an m×n integer grid such that the augmented
graph is a directed acyclic graph?

Now we prove that GIG-Recog is NP-complete.

Theorem 5 GIG-Recog is NP-complete.

Proof. If a rectilinear embedding of G is given on an
m×n grid, it can be checked in polynomial time whether
each edge has unit length and whether the augmented
graph is a directed acyclic graph . Thus the problem
is in NP. To prove that it is NP-hard, reduce the 3-
Partition problem to GIG-Recog as in the proof of
Theorem 4.
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Create a directed frame tree T with 3p(B+3)+4(p−
1) + 12× 2 = 3pB + 13p + 20 vertices as shown in Fig-
ure 10. Choose m = 4 and n = p(B+3)+p−1+3×2 =
pB + 4p + 5. On an m × n grid, T has the unique em-
bedding shown in Figure 10, which creates p holes with
B+3 grid points in each. Then create a directed path of
xi+1 vertices for each of the integers xi ∈ S, 1 ≤ i ≤ 3p.
The graph G containing T and all the 3p directed paths
has 3pB + 13p + 20 + pB + 3p = 4(pB + 4p + 5) ver-
tices in total. As in the proof of Theorem 4, it can be
shown that the given instance of 3-Partition has a so-
lution if and only if G has a rectilinear embedding on
the m×n integer grid, where each edge on the directed
paths points right to left. We now show that the aug-
mented graph obtained from such an embedding of G is
acyclic.

holesp

B+3 points pointspointsB+3 B+3

Figure 10: The frame tree for the proof of Theorem 5.

Figure 11(a) shows the augmented graph of the left-
most portion of the directed frame tree T with just one
hole, and Figure 11(b) shows the augmented graph when
the directed paths representing the integers in a subset
of S are laid out such that each edge on the directed
paths points right to left. Because of the symmetric
structure of the augmented graph, it is easy to see that
the augmented graph in Figure 11(b) is acyclic and
hence, the augmented graph of such a rectilinear em-
bedding of G on the grid is an acyclic directed graph.
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Figure 11: Illustration for the proof of Theorem 5. The
dot dashed lines in (a) are not shown in (b).

5 Generalizations of LOGs and GIGs

In this section, we show that the concepts of LOG
graphs and GIG graphs extend to Rd, where d ≥ 2,
and also to other kinds of grids than rectangular grids.

Figure 12(a) and (b) show a LOG and a GIG in R3.
Each vertex here has at most 6 potential neighbors and
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Figure 12: (a) A 3× 3× 2 LOG, (b) a 3× 3× 2 GIG.

outdegree at most one. Therefore, in Rd, each vertex
has at most 2d potential neighbors. In other words, if
we have a directed graph with outdegree at most one
and maximum degree ∆, a necessary condition for it to
be represented as a LOG in Rd is that d ≥ ∆/2. Fig-
ure 13(a) and (b) show examples of LOG graphs on a
triangular grid and a hexagonal grid in R2, respectively.
Each vertex of a LOG has at most 6 and 3 potential

(a) (b)

Figure 13: LOGs on (a) a triangular grid, and (b) a
hexagonal grid.

neighbors on a triangular and on a hexagonal grid, re-
spectively. This observation raises the following open
problem.
Open Problem: Let G be a directed graph with outde-
gree at most one, maximum degree 6 and lmn vertices.
What is the complexity of determining whether it is a
LOG graph on a rectangular (l×m×n) unit grid in R3

or a LOG graph on a triangular grid in R2?

6 Labeling LOGs with Repetition

In this section, we introduce another subclass of LOG
graphs: the Greatest Increase with Repeated Labels Al-
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lowed Grid directed graphs, or GIRL graphs for short.
GIRL graphs are a modification of GIG graphs where

we allow repeated use of labels, but at each vertex the
labels of its neighbors must be distinct; the label of a
vertex may appear among the labels of its neighbors.

Definition 6 A Greatest Increase with Repeated La-
bels Allowed Grid directed graph is a LOG graph
in which the vertices can be labeled with integers
1, 2, . . . ,mn such that the directed edge (u, v) ∈ E
if and only if v ∈ N(u), L(v) > L(u) and
L(v) = max({L(w)|w ∈ N(u)}); furthermore ∀v ∈
V, ‖N(v)‖ = ‖{L(w)|w ∈ N(v)}‖, i.e. for each vertex
the labels of its neighbors must be distinct.
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Figure 14: (a) A GIG graph, where each vertex has
a unique label, (b) an equivalent GIRL representation,
(c) A GIRL graph that is not a GIG graph and (d) the
augmented graph of the underlying LOG graph for (c)
which has a directed cycle shown in bold dashed lines.

Note that, since we can determine if a LOG graph
is a GIG graph, we can determine if a GIRL graph is
a GIG graph. For example, the GIRL graph in Fig-
ure 14(c) cannot be a GIG graph because its augmented
graph contains a directed cycle as shown in Figure 14(d).
Also note that there are LOG graphs that are not GIRL
graphs: for example, a 3 × 3 LOG graph without any
edges is not a GIRL graph. Thus the inclusions in Fig-
ure 15 are strict.

The possiblity of repeated labels leads to several ques-
tions:

• Given a LOG graph, is it a GIRL graph?

It is easy to check that Figure 14(b) uses a minimum
label set.

LOG

GIRL

GIG

Figure 15: The inclusions are strict.

• Given a GIG graph, what is the minimum set of
labels needed to represent it as a GIRL graph?

7 Conclusion

We have studied the LOG graphs and GIG graphs, in-
troduced the augmented graphs of a GIG graph and
characterized GIG graphs in terms of their augmented
graphs. We show that LOG graph and GIG graph recog-
nition is NP-complete. We have also introduced gener-
alizations of LOG graphs and a significant superclass of
GIG graphs called the GIRL graphs. We close with the
following question, similar in spirit to graph decompo-
sition problem such as linear arboricity [1].
Open problem: Given any directed acyclic graph G,
can we decompose G into (a minimum number of) aug-
mented graphs of GIG or GIRL graphs?
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