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Hyperbanana Graphs

Christopher Clement∗ Audrey Lee-St.John† Jessica Sidman‡§

Abstract

A bar-and-joint framework is a finite set of points to-
gether with specified distances between selected pairs.
In rigidity theory we seek to understand when the re-
maining pairwise distances are also fixed. If there exists
a pair of points which move relative to one another while
maintaining the given distance constraints, the frame-
work is flexible; otherwise, it is rigid.

Counting conditions due to Maxwell give a neces-
sary combinatorial criterion for generic minimal bar-
and-joint rigidity in all dimensions. Laman showed
that these conditions are also sufficient for frameworks
in R2. However, the flexible “double banana” shows
that Maxwell’s conditions are not sufficient to guaran-
tee rigidity in R3. We present a generalization of the
double banana to a family of hyperbananas. In dimen-
sions 3 and higher, these are (infinitesimally) flexible,
providing counterexamples to the natural generalization
of Laman’s theorem.

1 Introduction

A bar-and-joint framework is composed of universal
joints whose relative positions are constrained by fixed-
length bars. An embedding of such a framework in Rd

associates a point in Rd to each joint with the property
that the distance between joints connected by a bar is
satisfied by the embedding. Bar-and-joint frameworks
can be used to model structures arising in many appli-
cations, including sensor networks, proteins, and Com-
puter Aided Design (CAD) systems. In combinatorial
rigidity theory we seek an understanding of the struc-
tural properties of such a framework, and ask whether it
is flexible (i.e., admits an internal motion that respects
the constraints) or rigid.

In this paper, we assume that we are given an em-
bedding of a bar-and-joint framework from which the
lengths of bars can be inferred.
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Figure 1: The double banana is a Maxwell graph in R3,
but is flexible. Each “banana” can rotate about the
implied hinge (dotted).

Definition 1 A bar-and-joint framework F = (G,p)
embedded in Rd is composed of a graph G = (V,E) with
|V | = n and |E| = m and an embedding p : V → Rd,
which assigns a position vector pi to each vertex vi.

We only concern ourselves with generic embeddings of
these frameworks, which can be thought of as embed-
dings with the properties we would expect if we chose
an embedding at random. To formally define generic-
ity we require the notion of a rigidity matrix, which
encodes the infinitesimal behavior of the framework.

Definition 2 For a framework F = (G,p) embedded
in Rd we define a rigidity matrix MF to be an m × dn
matrix in which the columns are grouped into n sets of
d coordinates for each vertex. Each row of the rigidity
matrix corresponds to an edge ij and has the following
pattern.

v1 . . . vi · · · vj . . . vn

[ ]ij 0 · · · 0 · · · pi − pj · · · 0 · · · pj − pi · · · 0 · · · 0

If F is a framework, MF determines if it is infinites-
imally flexible or rigid; for brevity, we omit “infinitesi-
mally” for the remainder of this paper. We say that F
is rigid if the insertion of any new bar between vertices
does not change the rank of MF ; otherwise it is flexible.
A rigid framework is minimally rigid if the rows of MF

are independent.
The infinitesimal motions of F can be encoded by

assigning a velocity vector p′i ∈ Rd to each vertex
vi so that (p′1, . . . ,p

′
n) is nonzero and is in the null

space of MF (intuitively, these are instantaneous veloc-
ities that do not shrink or stretch the bar constraints).
There is always a set of trivial motions corresponding
to rigid body motions of Rd; the space of rigid motions
of Rd has dimension

(
d+1
2

)
and is generated by rota-

tions about (d − 2)-dimensional affine linear subspaces
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and translations. In general, then, a framework on at
least d vertices is minimally rigid if and only if its rigid-
ity matrix has nullity

(
d+1
2

)
. However, if a framework

F is contained in an affine subspace H ⊂ Rd where
dimH ≤ d − 2, then there is a rigid motion of Rd that
fixes F ; hence, the null space of MF has dimension less
than

(
d+1
2

)
.

Combinatorial counting conditions, first observed by
Maxwell [5], give a necessary condition for minimal bar-
and-joint rigidity. Throughout this paper, we will use
the convention that, if V ′ is a subset of the vertices of a
graph G and E is a subset of the edges of G, then E(V ′)
is the set of edges in E induced by the vertices in V ′.

Definition 3 A Maxwell graph G = (V,E) in dimen-
sion d satisfies

1. |E| = d|V | −
(
d+1
2

)
2. |E(V ′)| ≤ d|V ′|−

(
d+1
2

)
, for all V ′ ⊆ V where |V ′| ≥

d.

For almost all frameworks F = (G,p) on a fixed graph
G, the rank of MF is constant, as the set of special
embeddings for which MF drops rank is parameterized
by a closed subset of Rdn. We formally define genericity
as follows.

Definition 4 A framework (G,p) is generic if its rigid-
ity matrix achieves the maximum rank over all frame-
works (G,q).

We call a framework generically minimally rigid if there
exists a generic framework with the same underlying
graph that is minimally rigid. We analyze the generic
behavior of a framework purely by the combinatorial
structure of the graph. Therefore, from here on we will
write MG to denote the rigidity matrix associated to a
generic embedding of G.

In R2, Laman proved that the Maxwell conditions are
sufficient for generic minimal rigidity.

Theorem 5 (Laman [3]) A bar-and-joint framework,
with underlying graph G = (V,E), embedded in R2 is
generically minimally rigid if and only if it satisfies the
following conditions:

1. |E| = 2|V | − 3

2. |E(V ′)| ≤ 2|V ′| − 3, for all V ′ ⊆ V where |V ′| ≥ 2

However, the sufficiency of the Maxwell counting con-
ditions for rigidity does not generalize to higher di-
mensions. In R3, the well-known “double banana” is
a Maxwell graph that is flexible [2]. This structure is
composed of two “bananas” joined on a pair of vertices
(refer to Figure 1) and exhibits a hinge motion about

the dotted line. This denotes the existence of an implied
edge between two vertices that are not incident to each
other, yet whose distance is fixed as a consequence of
the other constraints. Since a rotation is allowed about
the edge, it is called an implied hinge.

Counterexamples like the double banana can provide
insight into the challenges presented in dimension 3 and
higher for which no combinatorial characterization of
bar-and-joint rigidity is known.

Contributions. In this paper, we describe a class of
graphs called hyperbananas that generalize the double
banana to higher dimensions. We present hyperbananas
that are Maxwell graphs and show these to be (infinites-
imally) flexible. To the best of our knowledge, this is
the first family of counterexamples to the sufficiency of
the Maxwell conditions for minimal bar-and-joint rigid-
ity addressing all dimensions of 3 and higher.

Related work. Other generalizations of the double ba-
nana include the banana spider graphs of Mantler and
Snoeyink [4]. These were developed to address an at-
tempt at classifying 3D bar-and-joint rigidity by vertex
connectivity, as it was conjectured that all graphs with
implied hinges must be 2-connected (like the double ba-
nana). The banana spider graphs provide examples with
higher vertex connectivity, answering this conjecture in
the negative. The key idea was to add “spider” com-
ponents to the double banana, increasing vertex con-
nectivity while maintaining flexibility about the implied
hinge.

Another class of counterexamples to Maxwell’s con-
ditions in 3D was developed by Cheng et al. [1]. These
“ring of roofs” frameworks, first described by Tay [7],
provide examples of flexible Maxwell graphs that ad-
mit no non-trivial rigid subgraphs, i.e., rigid subgraphs
larger than a tetrahedron. This countered an earlier
attempt by Sitharam and Zhou [6] to characterize 3D
bar-and-joint rigidity by detecting rigid components and
adding the resulting implied edges.

2 Maxwell hyperbananas

We now present a family of graphs called hyperbanana
graphs; under certain conditions, hyperbananas are
Maxwell graphs. We generalize the double banana,
which consists of two minimally rigid “bananas” glued
together on a pair of vertices. Each banana can be built
using the following inductive construction.

Definition 6 Fix a positive integer d. A d-Henneberg
0-extension on a graph G results in a new graph by
adding a single vertex and connecting it to d distinct
vertices in G.

When a d-Henneberg 0-extension is applied to a min-
imally rigid framework in Rd, minimal rigidity is pre-
served, and hence so are the Maxwell conditions [8]. In
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Figure 2: The hyperbanana H5,3 is a flexible Maxwell
graph R5; there are 3 implied edges (dotted) among the
vertices in U .

the double banana, each individual banana is created
by two 3-Henneberg 0-extensions on a triangle (which
is minimally rigid in R3), connecting each new vertex to
the 3 vertices of the triangle.

Before generalizing the banana construction, we give
some additional notation. If U and W are finite sets,
let KU denote the complete graph with vertex set U
and KU,W be the complete bipartite graph on the two
disjoint sets U and W .

Definition 7 A banana bunch is a graph Bd,b obtained
by performing b d-Henneberg 0-extensions on a Kd. The
b vertices added by the Henneberg extensions are called
banana vertices.

Since Kd embedded in Rd is minimally rigid for any d,
Bd,b is generically minimally rigid in dimension d.

Hyperbananas are composed of two banana bunches
glued together along the banana vertices.

Definition 8 For i = 1, 2, let Gi be a copy of Bd,b with
vertex set partitioned into Vi ∪ Ui, where the Kd has
vertex set Vi and the set Ui consists of banana vertices.
We define the hyperbanana Hd,b to be G1 ∪ G2/ ∼,
where ∼ identifies banana vertices based on some fixed
bijection from U1 to U2. The vertex set of Hd,b is the set
V = V1 ∪ V2 ∪ U, where U is the set of banana vertices.

The double banana is simply H3,2. An example of
a higher dimensional hyperbanana, H5,3, is pictured in
Figure 2. While this is a Maxwell graph, not all choices
of b and d satisfy the counting conditions. For exam-
ple, simply checking the counts on the total number of
edges for the hyperbanana H4,3 confirms that this graph
has too many edges to be Maxwell. In fact, it is rigid
in R4, but overconstrained. Therefore, it is not mini-
mally rigid as its rigidity matrix contains dependencies.
Checking the counts on the total number of edges for
the hyperbanana H6,3 shows that it is underconstrained
and therefore flexible in R6.

2.1 Odd-dimensional hyperbananas

When d is odd and equal to 2b − 1, we obtain hyper-
bananas that are Maxwell graphs. We begin with a
more general lemma that will be used in proving the
counting conditions. In the proofs that follow, we de-
fine V ′i = V ′ ∩ Vi and U ′ = V ′ ∩ U for a subset V ′ of
the vertex set of Hd,b,

Lemma 9 If Hd,b = (V,E) and V ′ ⊆ V, and |V ′i ∪U ′| ≥
d for i = 1, 2, then

|E(V ′)| ≤ d|V ′| − 2
(
d+1
2

)
+ d|U ′|.

Proof. As each banana bunch is minimally rigid we
have

|E(V ′i ∪ U ′)| ≤ d|V ′i ∪ U ′| −
(
d+1
2

)
(1)

for each i. Adding the inequalities yields

|E(V ′)| ≤ d(|V ′1 |+ |V ′2 |+ 2|U ′|)− 2
(
d+1
2

)
= d(|V ′1 |+ |V ′2 |+ |U ′|)− 2

(
d+1
2

)
+ d|U ′|

= d|V ′| − 2
(
d+1
2

)
+ d|U ′|.

(2)

�

We can now show that the specific class of hyper-
bananas in odd-dimensional spaces are Maxwell graphs.

Theorem 10 The hyperbanana Hd,b embedded in Rd

with d = 2b− 1 is a Maxwell graph.

Proof. We check condition 1 of Definition 3 by vertex
and edge counts. The graph Hd,b has d vertices from
each complete Kd graph and b banana vertices, total-
ing 2d + b vertices. Since d = 2b − 1, there are 5d+1

2

vertices. Each Kd has
(
d
2

)
edges, and each banana ver-

tex is incident to 2d edges. This sums to an edge count
of 2

(
d
2

)
+ 2d(d+1

2 ). Simplifying, we can verify that the
edge count is |E| = 2d2. Substituting the vertex count
|V | = 5d+1

2 , we see that Maxwell condition 1 is satisfied:

d|V | −
(
d+1
2

)
= d

(
5d+1

2

)
−
(
d+1
2

)
= |E|

Now we check Maxwell condition 2. If V ′ is contained
within a single banana bunch, the condition is satisfied
as Bd,b is minimally rigid and therefore Maxwell. If
V ′ intersects both banana bunches non-trivially, then
there are three cases which depend on whether the in-
tersection with each banana bunch contains at least d
vertices.

If |V ′i ∪U ′| ≥ d for both i, then combining |U ′| ≤ b =
d+1
2 with Lemma 9 gives the result.
Now suppose, without loss of generality, that |V ′1 ∪

U ′| ≥ d, but |V ′2 ∪ U ′| < d. We know that

|E(V ′2 ∪ U ′)| =
(|V ′

2 |
2

)
+ |U ′||V ′2 | (3)

=
(|V ′2 | − 1)|V ′2 |

2
+ |U ′||V ′2 | (4)

≤ (d− 2)|V ′2 |
2

+ b|V ′2 | (5)
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Since b = d+1
2 , we obtain |E(V ′2 ∪U ′)| ≤ d|V ′2 |. Combin-

ing this with Inequality 1 gives the desired inequality in
the second case.

Finally, suppose that both |V ′i ∪ U ′| < d and |V ′1 | ≥
|V ′2 |. As |V ′1 ∪V ′2 ∪U ′| ≥ d, there exists a subset W ⊆ V ′2
so that |V ′1 ∪W ∪ U ′| = d. Let W ′ = V ′2\W. The set
|E(V ′2)| consists of the edges of KW , the edges of KW ′

and the edges of KW,W ′ .
Now suppose we had a set V ′′1 satisfying V1 ⊇ V ′′1 ⊃

V ′1 and |V ′′1 ∪ U ′| = d. Then

|E(V ′1 ∪W ∪ U ′)|+ |E(KV ′
1 ,W

)| = |E(V ′′1 ∪ U ′)|,
and by Inequality 1,

|E(V ′1 ∪W ∪U ′)|+ |E(KV ′
1 ,W

)| ≤ d|V ′1 ∪W ∪U ′|−
(
d+1
2

)
.

(6)
Applying the argument in the second case to the set
W ′ ∪U ′ and adding the inequality to 6, gives the result
in this final case as |E(KW,W ′)| < |E(KV ′

1 ,W
)|.

�

2.2 Even-dimensional hyperbananas

We observed earlier that hyperbananas may be ei-
ther overconstrained or underconstrained in even-
dimensional spaces and are not Maxwell graphs. How-
ever, by making a small modification to our definition,
we obtain Maxwell graphs for even-dimensional spaces.

Definition 11 For even d, we define the even hyper-
banana to be a graph H+

d,b consisting of a hyperbanana

Hd,b together with an additional d
2 edges connecting dis-

tinct vertices of the complete graphs in the two banana
bunches.

This addition of d
2 edges between the complete graphs

in Hd,b results in H+
d,b being a Maxwell graph for the

even-dimensional spaces for certain values of d relative
to b. One example of an even hyperbanana, H+

4,2, is

shown in Figure 3. Note that H+
d,b = (V, F ), is built

from Hd,b = (V,E); let E+ be the additional d
2 edges

so that F = E ∪ E+. In Figure 3, for example, E+ is
composed of the 2 dashed edges.

Theorem 12 The even hyperbanana H+
d,b = (V, F ) em-

bedded in Rd with d = 2b is a Maxwell graph.

Proof. Since d = 2b, the number of vertices in H+
d,b is

|V | = 2d + b = 5
2d, as there are two Kd graphs and

b banana vertices. There are 2 complete graphs with(
d
2

)
edges, b banana vertices connecting to the 2d com-

plete graph vertices, and d
2 edges between the complete

graphs, resulting in |F | = 2d2 − d
2 . By substituting the

vertex count, we can verify Maxwell condition 1.

d|V | −
(
d+1
2

)
= 2d2 − d

2
= |F |.

Now let V ′ ⊆ V with |V ′| ≥ d. If V ′ is completely
contained in a banana bunch, Maxwell condition 2 is

Figure 3: The even hyperbanana H+
4,2 is a flexible

Maxwell graph; it is built from the hyperbanana H4,2

by an additional 2 (dashed) edges.

satisfied as Bd,b is Maxwell. Assume, then, that V ′

non-trivially intersects both vertex sets V1 and V2.

If |V ′i ∪ U ′| ≥ d for both i = 1, 2, then by Lemma 9,

|E(V ′)| ≤ d|V ′| − 2
(
d+1
2

)
+ d|U ′|).

The number of banana vertices is b = d
2 , so |U ′| ≤ d

2 .
Therefore,

|E(V ′)| ≤ d|V ′| − 2
(
d+1
2

)
+

d2

2

= d|V ′| −
(
d+1
2

)
− d2 + d

2
+

d2

2

= d|V ′| −
(
d+1
2

)
− d

2
.

Since F = E∪E+, |F (V ′)| = |E(V ′)|+ |E+(V ′)|. By
adding |E+(V ′)| to both sides of the previous inequality
we obtain

|F (V ′)| ≤ d|V ′| −
(
d+1
2

)
− d

2
+ |E+(V ′)|.

By definition, |E+| = d
2 , implying |E+(V ′)| ≤ d

2 . There-
fore, we can conclude that Maxwell condition 2,

|F (V ′)| ≤ d(|V ′|)−
(
d+1
2

)
,

holds in this case.

Now suppose, without loss of generality, that |V ′1 ∪
U ′| ≥ d, but |V ′2 ∪ U ′| < d. Since b = d

2 , Inequality 5
implies

|E(V ′2 ∪ U ′)| ≤ (d− 1)|V ′2 |. (7)

We can combine this with

|E(V ′1 ∪ U ′)| ≤ d|V ′1 ∪ U ′| −
(
d+1
2

)
and the edges in E+(V ′) to obtain

|F (V ′)| ≤ d|V ′1 ∪ U ′| −
(
d+1
2

)
+ (d− 1)|V ′2 |+ |E+(V ′)|

= d|V ′| −
(
d+1
2

)
− |V ′2 |+ |E+(V ′)|

≤ d|V ′| −
(
d+1
2

)
as |E+(V ′)| ≤ |V ′2 |.

Finally, suppose that both |V ′i ∪ U ′| < d. Assume
that |V ′1 | ≥ |V ′2 | and define W and W ′ as in the proof
of Theorem 10. Adding Inequalities 6 and 7 (with W ′
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replacing V ′2),

|E(V ′1 ∪W ∪ U ′)|+ |E(KV ′
1 ,W

)|+ |E(W ′ ∪ U ′)|

≤ d|V ′1 ∪W ∪ U ′| −
(
d+1
2

)
+ (d− 1)|W ′|

= d|V ′| −
(
d+1
2

)
− |W ′|,

and hence

|E(V ′1 ∪W ∪ U ′)|+ |E(KV ′
1 ,W

)|+ |E(W ′ ∪ U ′)|+ |W ′|

≤ d|V ′| −
(
d+1
2

)
.

Since |F (V ′)| is equal to

|E(V ′1∪W∪U ′)|+|E(KW,W ′)|+|E(W ′∪U ′)|+|E+(V ′)|,
it will suffice to show that

|E(KW,W ′)|+ |E+(V ′)| ≤ |E(KV ′
1 ,W

)|+ |W ′|,
or that

|W | · |W ′|+ |E+(V ′)| ≤ |V ′1 | · |W |+ |W ′| (8)

Now let t = |V ′1 | − |W ′|. Since |V ′1 | ≥ |V ′2 | and |V ′1 | <
d, |W | > 0, which implies that |V ′1 | > |W ′| and hence
that t ≥ 1. Setting |W ′| = |V ′1 | − t, we have

|W | · |W ′|+ |E+(V ′)|
= |W | · (|V ′1 | − t) + |E+(V ′)|
= |V ′1 | · |W | − t|W |+ |E+(V ′)|
≤ |V ′1 | · |W | − |W |+ |E+(V ′)|,

as t ≥ 1. Then

|V ′1 | · |W | − |W |+ |E+(V ′)| ≤ |V ′1 | · |W |+ |W ′|
if and only if

|V ′1 | · |W |+ |E+(V ′)| ≤ |V ′1 | · |W |+ |W ′|+ |W |.
Indeed, since |W ′| + |W | = |V ′2 | ≥ |E+(V ′)|, this in-
equality holds, completing the proof. �

3 Flexible hyperbananas

In this section, we prove that the Maxwell hyperbananas
are flexible.

We begin by considering the rigidity matrix MBd,b

for a generic framework on the banana bunch Bd,b in

dimension d, which has d(d + b) columns and
(
d
2

)
+ db

rows. Since the banana bunch is minimally rigid, the
rank of its rigidity matrix is maximal and equal to the
number of rows

(
d
2

)
+ db. Let the vertex set of Bd,b be

partitioned into sets V1 and U , where the set U consists
of banana vertices. Assume that the columns of MBd,b

are arranged so that the columns corresponding to the
vertices in V1 come first, followed by the columns for U .

Lemma 13 Each row of the block matrix[
0 MKU

]
with d2 columns of zeros (d columns for each vertex in
the V1), is in the row space of MBd,b

.

Proof. Since the banana bunch is minimally rigid and
spans Rd, MBd,b

has nullity
(
d+1
2

)
. If we add an edge

from KU , the new rigidity matrix will still have nullity(
d+1
2

)
. Thus, each such row must be a linear combination

of the rows of MBd,b
. �

Proposition 14 If Bd,b = (V1 ∪ U,E) is embedded in

Rd, and the rank of MKU
is
(
b
2

)
, then MBd,b

is row-
equivalent to a matrix of the form[ ]

M∗Bd,b

0 MKU
,

where M∗Bd,b
consists of |E| −

(
b
2

)
rows of the original

matrix MBd,b
.

Proof. Let R be a row in [ 0 MKU ]. By Lemma 13,
R may be written as a linear combination of rows of
MBd,b

. Any row of MBd,b
appearing in such a linear

combination with a nonzero coefficient may be replaced
by R through a sequence of elementary row operations.
Any subsequent row R′ of [ 0 MKU ] will remain de-
pendent on the rows of the modified matrix. Moreover,
when we express R′ as a linear combination of the cur-
rent set of rows, some remaining row of the original
matrix MBd,b

must appear with a nonzero coefficient as
the rows of MKU

are independent. Thus, we can insert
each row of [ 0 MKU ] in this way.

�

With this we can prove the following theorem.

Theorem 15 If G is the hyperbanana Hd,b ⊂ Rd where
d = 2b − 1 or H+

d,b ⊂ Rd where d = 2b and b ≥ 2, then
G is flexible.

Proof. Consider the hyperbanana Hd,b partitioned into
two bunches Bd,b(1) and Bd,b(2). Let MBd,b

(1) be the
rigidity matrix for Bd,b(1), MBd,b

(2) be the rigidity ma-
trix for Bd,b(2) and M be the rigidity matrix for Hd,b.
If we put the vertices in an order with (V1, U, V2) and
order the columns of M accordingly, then M is a block
matrix of the form

V1 U V2[ ]
Bd,b(1) MBd,b

(1) 0
Bd,b(2) 0 MBd,b

(2)

By Proposition 14 M is row equivalent to

V1 U V2
Bd,b(1)

MBd,b
(1)∗

0
0 MKU

Bd,b(2) 0
MBd,b

(2)∗

MKU
0

We can see that there are at least
(
b
2

)
dependencies

in M , since the [0|MKU
|0] is seen twice in the matrix.

Therefore, since the number of columns is d|V | and the
number of rows is |E|, the nullity of M is at least

(
d+1
2

)
+(

b
2

)
. Thus, since a framework with at least d vertices is

minimally rigid in Rd if and only if it has nullity
(
d+1
2

)
,

Hd,b is flexible. Moreover, since M is a submatrix of
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the rigidity matrix of H+
d,b, which satisfies the Maxwell

counts, we see that H+
d,b is also flexible. �

For odd-dimensional bananas, we can show this
bound is tight using the following proposition.

Proposition 16 Any linear combination of rows of
M∗Bd,b

of the form

V1 U
[ ]0 ∗ ,

must be trivial, where the ∗ represents potentially
nonzero entries.

Proof. Suppose for contradiction that there is a linear
combination of rows of M∗Bd,b

equal to R where R has
nonzero entries only in columns corresponding to U . Let
R be the projection of R to the columns corresponding
to U.

If R is dependent on the rows in MKU
, then the rank

of MBd,b
is not maximal, which is a contradiction. So,

we must assume that R is independent of these rows.
Thus, the nullspace of MKU

augmented by the row R
is smaller than the nullspace of MKU

. But all of the
elements of the nullspace of MKU

are obtained from
rigid motions of Rd. So there is a nonzero vector p′ ∈
Rdb in the null space of MKU

which assigns velocities to
vertices in U and has the property that R · p′ 6= 0.

Since KU is rigid, p′ must be obtained by restricting a
rigid motion of Rd to KU . Applying this rigid motion to
all of Bd,b gives a vector q′ that assigns velocities to all
vertices in Bd,b and is equal to p′ for the vertices in U.
As R has nonzero entries only in columns corresponding
to U, q′ ·R = p′ ·R 6= 0. R is in the row space of MBd,b

,
so this implies that the nullspace of MBd,b

is missing

one of the rigid motions of Rd. This is a contradiction
because MBd,b

is a rigidity matrix. �

Theorem 17 The hyperbanana Hd,b ⊂ Rd where d =
2b − 1 has rigidity matrix MHd,b

with nullity exactly(
d+1
2

)
+
(
b
2

)
.

Proof. We will show that

M ′ =

V1 U V2[ ]
Bd,b(1)

MBd,b
(1)∗

0
0 MKU

Bd,b(2) 0 MBd,b
(2)∗

has full rank and hence nullity
(
d+1
2

)
+
(
b
2

)
.

Since MBd,b
(1) has full rank, we know that the top

block of M ′ has linearly independent rows. Similarly,
the rows in [0|MBd,b

(2)∗] are also an independent set.
Now suppose there is a row R ∈ [0|MBd,b

(2)∗] that is
dependent on the upper block of M ′; then R is a linear
combination of the rows of [MBd,b

(1)∗|0] and [0|MKd
|0].

There must be at least one row of [MBd,b
(1)∗|0] with a

nonzero coefficient or we would contradict the indepen-
dence of [0|MBd,b

(2)]. Since R is zero in the columns
corresponding to vertices in V1, this implies that there
is a linear combination of rows of [MBd,b

(1)∗|0] that is
nonzero only in the banana vertex columns, which con-
tradicts Proposition 16.

�

4 Conclusions and Future Work

We presented a family of hyperbanana graphs and
showed that they are Maxwell graphs under certain con-
ditions. We further proved that they are flexible, pro-
viding counterexamples to the sufficiency of the Maxwell
counts for bar-and-joint rigidity in dimensions 3 and
higher.

For hyperbananas embedded in odd-dimensional
spaces, we gave a precise analysis of the space of in-
finitesimal motions. However, it remains an open prob-
lem to give an exact analysis for the even hyperbananas,
as the addition of the d

2 edges prevents us from extend-
ing our proof. Based on Mathematica calculations on
randomized embeddings of even hyperbananas, we con-
jecture the following:

Conjecture 1 The even hyperbanana H+
d,b ∈ Rd where

d = 2b and b ≥ 2 has a rigidity matrix with nullity
exactly

(
d+1
2

)
+
(
b
2

)
.

Since counterexamples provide an increased under-
standing of barriers to finding combinatorial charac-
terizations of higher-dimensional bar-and-joint rigidity,
it would also be interesting to further generalize the
hyperbananas by parametrizing the number of banana
bunches instead of always gluing two.
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