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Drawing some 4-regular planar graphs with integer edge lengths

Timothy Sun*

Abstract

A classic result of Féry states that every planar graph
can be drawn in the plane without crossings using only
straight line segments. Harborth et al. conjecture that
every planar graph has such a drawing where every edge
length is integral. Biedl proves that every planar graph
of maximum degree 4 that is not 4-regular has such
a straight-line embedding, but the techniques are in-
sufficient for 4-regular graphs. We further develop the
rigidity-theoretic methods of the author and examine an
incomplete construction of Kemnitz and Harborth to ex-
hibit integral drawings of families of 4-regular graphs.

1 Introduction

All graphs in this paper are simple and finite. Let
G = (V,E) be a planar graph. A Fary embedding
¢ : V — R? of a planar graph is an embedding such that
the straight-line drawing induced by ¢ has no crossing
edges. Fary [3] proved that all planar graphs have such
an embedding. A natural extension of Fary’s theorem is
to require that every edge has integral length, but it is
not known if every planar graph has such an embedding,
which we call an integral Fary embedding.

Conjecture 1 (Harborth et al. [7]) All
graphs have an integral Fary embedding.

planar

Analogously, we call a Fary embedding with ratio-
nal edge lengths a rational Fary embedding. For the
remainder of the paper, we consider only rational Fary
embeddings, since an appropriate scaling yields an in-
tegral one.

Kemnitz and Harborth [8] show that every planar 3-
tree has a rational Fary embedding. However, their so-
lution for the analogous operation for 4-valent vertices
does not always work. Geelen et al. [4] use a technical
theorem of Berry [1] to prove Conjecture 1 for cubic pla-
nar graphs. Biedl [2] notes that their proof extends to
even more graphs. One family of interest are the almost
4-reqular graphs, namely the connected graphs of max-
imum degree 4 that are not 4-regular. These results
actually yield rational Fary embeddings with rational
coordinates, and we call such embeddings fully-rational.
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Biedl strongly conjectures that all 4-regular graphs
have rational Fary embeddings. The aforementioned
methods all rely on inductively adding vertices of degree
at most 3 into a rational Fary embedding, but unfortu-
nately, there are no known general methods for adding
vertices of degree 4. It is even unknown whether or not
there is a point in the interior of a unit square at rational
length from each of the four vertices [6].

A previous paper by the author [11] details a con-
struction of rational Fary embeddings of graphs using
elementary results from rigidity theory. We use these
rigidity-theoretic techniques for drawing planar graphs
with small edge cuts and synthesize the aforementioned
results to prove the existence of rational Fary embed-
dings for two families of 4-regular planar graphs, namely
those that are not 4-edge-connected and those with a di-
amond subgraph.

2 Berry’s Theorem and 3-Eliminable Graphs

Perhaps the most general technique known for con-
structing rational Fary embeddings is the following re-
sult of Berry [1].

Theorem 1 (Berry [1]) Let A, B, and C be points in
the plane such that AB, (BC)?, and (AC)? are rational.
Then the set of points P at rational distance with all
three points is dense in the plane.

Geelen et al. [4] show that this leads to an inductive
method for finding rational Fary embeddings of a cer-
tain family of graphs. If G is a graph on n vertices, a se-
quence of those vertices vy, vo, ..., v, is a 3-elimination
order [2] if

1. G is the graph on one vertex, or

2. v, has degree at most 2 and vy,...,v,-1 is a 3-

elimination order for G — v,,, or

3. vy, has degree 3 and vq,...,v,_1 is a 3-elimination
order for some graph (G — v,,) U uw, where u and
w are two of the neighbors of v,,.

A graph is said to be 3-eliminable if it is has a 3-
elimination order. For any two maps p,p’ : V — R2,
let d(p,p’) be the Euclidean distance between p and p’,
interpreted as points in R?Y!. We say that a Fary em-
bedding ¢ can be approzimated by a type of Fary em-
bedding (e.g. rational Fary embedding) if for all € > 0,
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there exists a Fary embedding ¢’ of that type such that
d(¢,¢’) < e. Geelen et al. essentially prove the follow-
ing:

Theorem 2 (Geelen et al. [4], Biedl [2]) Any
Fary embedding ¢ of a 3-eliminable graph can be
approzimated by a fully-rational Fary embedding.

We do not have a non-inductive characterization of 3-
eliminable graphs, but some partial results are known.
A graph G = (V,E) is called (k,l)-sparse if for every
subset of vertices V' of size at least k, the induced sub-
graph of G on V' has at most k|V’| — [ edges.

Theorem 3 (Biedl [2]) Every (2,1)-sparse graph is
3-eliminable, and hence any Fary embedding of a (2,1)-
sparse planar graph can be approximated by a fully-
rational Fary embedding.

The family of (2,1)-sparse graphs contains many
other interesting classes of graphs, some of which can
be found in [2]. Our interest lies mostly in the following
corollary, as it is used in our constructions of rational
Fary embeddings for both families of 4-regular planar
graphs.

Corollary 4 (Biedl [2]) Any Fary embedding of an
almost 4-reqular planar graph can be approximated by
a fully-rational Fary embedding.

3 Rigidity Theory and Graphs With Small Edge Cuts

A framework is a pair (G, p) where G is equipped with
a configuration p : V(G) — R? which sends vertices
to points in d-dimensional Euclidean space. A generic
configuration is one where its |V'|d coordinates are inde-
pendent over the rational numbers, and a generic frame-
work is one with a generic configuration. A framework
is flexible if there is a continuous motion of the vertices
preserving edge lengths that does not extend to a Eu-
clidean motion of R%, and it is said to be rigid otherwise.

The rigidity of a framework can be tested by examin-
ing its rigidity matrix. Let G be a graph on n vertices
and m edges, and fix an ordering of the edges eq, ..., en,.
Define fg : R"™ — R™ to be the function that takes
a configuration p to a vector (||p(e1)||?, ..., ||lp(em)||?)
consisting of the squares of the edge lengths. The rigid-
ity matriz of (G,p) is defined to be 3dfc(p), where d is
the Jacobian, and its dimensions are m x nd. Then, the
kernel of the rigidity matrix corresponds to so-called
“infinitesimal motions” of the framework. A reqular
point is a configuration that maximizes the rank of the
rigidity matrix over all possible configurations. It is easy
to see that generic configurations are all regular points.
We say that a Fary embedding is regular if it is a regular
point.

An edge is independent if the corresponding row in the
rigidity matrix is linearly independent from the other
rows. Otherwise, it is said to be redundant, since delet-
ing it does not change the space of infinitesimal motions.
For d > 2, it is a long-standing open problem to find a
combinatorial characterization of graphs with all inde-
pendent edges. However, a complete characterization is
known in two dimensions.

Theorem 5 (e.g. Graver et al. [5]) A generic
framework of a graph in R? has all independent edges
if and only if it is (2,3)-sparse.

A framework is minimally rigid if it is rigid and delet-
ing any edge makes it flexible. Perhaps the most well-
known restatement of this result is known as Laman’s
theorem.

Corollary 6 (Laman [9]) A generic framework of a
graph G = (V, E) is minimally rigid in R? if and only
if it is (2, 3)-sparse and has 2|V| — 3 edges.

One consequence of this result is that all planar (2, 3)-
sparse graphs have rational Fary embeddings, as proved
by the author in [11], but we are more concerned with
how rigidity theory allows us to draw graphs with small
edge cuts. An edge cut of a connected graph G = (V, E)
is a subset of E whose deletion disconnects the graph.
A minimal edge cut has no edge cuts as proper sub-
sets. For example, consider a Fary embedding of a pla-
nar graph with a bridge uv that splits the graph into
subgraphs G and Gs. Deleting uv yields a new flex,
namely the one that allows us to translate G; or G in
a direction parallel to uv, and we move along this flex
until the distance between uv is rational and replace the
edge. Such a technique can be generalized to cuts of up
to three edges, using the main trick from [11].

Lemma 7 (Sun [11]) Let ¢ be a regular Fary embed-
ding of G, and let uv be an independent edge. Then,
¢ can be approrimated by a reqular Fary embedding ¢’
such that ||’ (u) — ¢'(v)|| is rational, and all other edge
lengths remain the same.

Theorem 8 Let G = (V,E) be a graph with a mini-
mal edge cut {e1, ea,e3} which separates G into Gy and
Go. Furthermore, suppose that ey, e2, and e3 are not
all incident with the same vertex. Then, each e; is in-
dependent in a generic framework.

Proof. Assume without loss of generality that Gy =
(Vi1, E1) and Gy = (Va, E5) are minimally rigid graphs.
If G is also minimally rigid, then each of the edges in
the cut must be independent. Furthermore, assume that
V1 and V5 are just the vertices incident with the e;’s, in
which case G; and G5 are one of the complete graphs Ko
or K3. We can make this assumption because any flex
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on G induces a rigid motion on GG; and Gs, so replac-
ing each graph with Ky or Kj still results in a flexible
graph. There are just three graphs under this assump-
tion, which are depicted in Figure 1. By Corollary 6, all
three are rigid. O

Figure 1: The three minimally rigid graphs in Theorem
8. The edge cuts are thickened.

The previous theorem is the best possible in terms of
the number of edges in the cut, since for an edge cut of
size 4, there are |E1|+|Ez|+4 > (2|V1]|—3)+(2|V2]|—3)+
4 > 2|V| — 3 edges (we have strict inequality when |V;]
or |V3| is 1), so one of the edges in the cut is redundant.
Furthermore, we require that the e;’s not meet at the
same vertex for the same reason.

Using this result and those of the previous section, we
obtain our first result for 4-regular graphs.

Theorem 9 All connected 4-reqular planar graphs that
are not 4-edge-connected have rational Fary embeddings.

Proof. By a degree-counting argument, a 4-regular
graph cannot have a minimal edge cut of size 3, so the
edge cut must consist of two edges. Let G be a 4-regular
planar graph that is not 4-edge-connected, and let ¢ be
a Fary embedding of G. We can perturb ¢ to a generic
(and hence regular) Fary embedding ¢’. In the frame-
work (G, @), the edges of the cut are independent by
Theorem 8. There exists an open neighborhood around
¢’ consisting of only regular Fary embeddings, so if our
perturbations of ¢’ are suitably small, every edge of the
cut stays independent.

Deleting the edge cut yields two almost 4-regular
graphs GG; and G3. By Corollary 4, each G; can be
approximated by a rational Fary embedding. Combin-
ing these two approximations yields a Fary embedding
of G such that the only edges that are possibly not ratio-
nal are those in the cut. By applying Lemma 7 on each
edge of the cut, we obtain a rational Fary embedding of
G. O

4 An Operation of Kemnitz and Harborth

The inductive step in proving Fary’s theorem possibly
deletes edges and inserts a new k-valent vertex into the
interior of the resulting polygon, as in Figure 2. We
call this operation a k-addition if we start and end with

rational Fary embeddings. Kemnitz and Harborth [8]
tried to find k-additions for & = 3,4,5, following the
proof of Fary’s theorem. Geelen et al. [4] remarked
that Theorem 1 suffices for the case k = 3. For adding
a vertex of degree 4 into a quadrilateral (), Kemnitz and
Harborth chose to place the new vertex on the diagonal
so that one of the constraints is eliminated.

Figure 2: Adding a vertex of degree 4 after deleting an
edge.

Consider a quadrilateral @@ with a diagonal D of
length f, as in Figure 3. Kemnitz and Harborth at-
tempt to find a point P on D such that for rational
lengths a, b, ¢, d, and f, the lengths x, y, and z are
rational as well. They do not accomplish this for all
quadrilaterals, though they always find a point on the
line containing D. We briefly review their solution of
the associated Diophantine equations.

b o

Figure 3: Variables for the Diophantine equations of
Kemnitz and Harborth.

Let s =% and t = %d. Note that for nondegener-
ate , s and t cannot be £1. We can express = as

_ 2afs+ a® + f2 —b? B 2dft +d% + f2 — 2

B f(1—s?) B f(1—12)
It suffices to find suitable values of s and ¢ such that the
second equality holds. Let

K =a’+ f* -’

L =2af
M =d*+ f* -
N = 2df.
t and s are related by
1
t=———(N(s*-1) £ VR
K+ Ls VD VE)

where
R = N?s* + 4LM?® + 2(2KM + 2L? — N?)s?
+4L(2K — M)s + 4K (K — M)* + N2
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We wish for v/R to be rational, so if we let

q=VR,

S =4LM,

T =2(2KM +2L? — N?),
U=4L(2K — M),

V =4K(K — M) + N2,

we obtain the Diophantine equation
N2s* + S+ Ts> +Us+V = ¢2,

which has already been solved in Mordell [10]. The so-
lution of this equation gives one for the original Dio-
phantine equation via substitution.

Theorem 10 (Kemnitz and Harborth [8]) If
ANZ2ST — S3 —8NAU # 0, then there exists a solution
for P where x, y, and z are all rational that satisfies

. 64NOV — 4(N2T — 52)2
8N2(4AN2ST — 53 — 8N*U)

_ AN?(2N2s? 4 Ss+T) — 52

B 8N3 '

q

Kemnitz and Harborth analyze the case where the
denominator of s vanishes, but for our purposes, Theo-
rem 10 is sufficient. Unfortunately the solution to the
Diophantine equation does not guarantee that P lies in-
side the quadrilateral, so it cannot be used as a general
operation on rational Fary embeddings. For drawing 4-
regular graphs with diamond subgraphs, we make use of
permissible quadrilaterals, namely those where P does
land on the diagonal. All we need is the existence of
just one permissible quadrilateral.

Proposition 11 The quadrilateral with lengths
a=b=3, c=d=4, f=5
s permissible.

Proof. Tracing through Theorem 10 yields a value of
x = 282240/357599, which yields a point inside the
quadrilateral. O

Directly using Theorem 10 requires a 5-vertex wheel
subgraph, but it turns out that we can relax the condi-
tions slightly.

Proposition 12 Theorem 10 still produces rational so-
lutions even under the weaker condition that only b*> and
¢ have to be rational.

When we only require that b? and c? are rational when
adding the new vertex, we call the operation a gener-
alized 4-addition. For a fully-rational Fary embedding,
the square of the distance between any two vertices is al-
ways rational, so Proposition 12 can be used when the
corresponding edges are missing. Ultimately, we per-
form the generalized 4-addition on a slightly perturbed
quadrilateral, so we need an additional result for quadri-
laterals nearby.

Proposition 13 Let () be a permissible quadrilateral.
There exists € > 0 such that every Q' satisfying
d(Q, Q") < € is also permissible.

Proof. The solution for z is a continuous function of
the edge lengths of ), and hence a continuous function
of the coordinates of the vertices. O

5 4-Regular Graphs With Diamonds

We use the results of the previous section to find a ratio-
nal Fary embedding of a 4-regular graph with a diamond
subgraph. The diamond graph is the simple graph on
four vertices and five edges, and the name comes from
the common visualization as two triangles sharing an
edge. For a 4-regular graph G with a diamond sub-
graph, label the vertices of that subgraph and the other
neighbor of one of the 3-valent vertices as in the left-
most graph in Figure 4. Let G’ be the graph formed by
deleting P from G and adding the edge vovy, and let
G be the graph formed by deleting P and adding the
edges v1v4 and vsvy.

V2

U3

Vg

U1

Figure 4: Local drawings of our graphs G, G’, Gr.
Dashed lines are possibly missing edges.

The main idea of our construction is to perform a gen-
eralized 4-addition on a fully-rational Fary embedding
of G’ to get one of G, but some preliminary results are
needed to ensure that the quadrilateral formed by the
v;’s is permissible and that adding P does not create any
crossing edges. We want to show that the quadrilateral
@ = v1v2v3vy is a face in some planar embedding of G,
and by using a modification of Tutte’s spring theorem,
we can devise a Fary embedding where () is permissible
and empty in the interior.

The figure suggests that vyve P and vous P are faces
in the planar embedding. Luckily for the graphs we
consider, this is true for any planar embedding.
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Proposition 14 Let G be a planar 4-edge-connected 4-
reqular graph. Then, every K3 subgraph bounds a face
in any planar embedding of G.

Proof. Consider any K3 subgraph with vertices wy, wa,
and ws. The edges of the subgraph form a simple cycle
C, so consider the remaining six edges incident with the
w;’s. We assert that the neighbors of wy, ws, and ws,
besides each other, are either all inside C' or all outside
C. 1If this is not the case, then there are g > 0 and
h > 0 edges that are incident with vertices inside and
outside of C, respectively. Since g + h = 6, either g
or h is less than 4. However, this implies that one of
those sets of edges is a cut of size less than 4, which is
a contradiction. Thus, one of g or h must be 0, so C'is
a face. O

Corollary 15 @ is a face of some planar embedding of
Gr.

Proof. For any planar embedding of G, Proposition 14
implies that the cyclic rotation of vertices around P
is vy, vg,v3,v4 Or its mirror, so we may add the edges
v1v4 and v3vy into this embedding without violating pla-
narity. Deleting P yields a planar embedding of G with
Q as a face. O

Now that we know that @ is a face of G, we need to
draw it in the shape of a permissible quadrilateral. A
well-known result in graph theory, sometimes referred to
as Tutte’s spring theorem, states that for a 3-connected
plane graph G with exterior face F, we can make F
whatever convex polygon we desire and obtain a Fary
embedding with all convex interior faces. If the 3-
connectedness condition is dropped, we can add vertices
and edges into the graph to make the graph 3-connected,
but the faces induced on the original graph might not
be convex.

Theorem 16 (Tutte [12]) Let G be a plane graph
with a simple face F' and a prescribed conver embed-
ding ¢r : V(F) — R? of F. Then, there exists a Fary
embedding ¢ of G such that ¢ restricted on the vertices
of F is equal to ¢ and F 1is the exterior face.

Corollary 17 Theorem 16 can be modified so that in
¢, F is an interior face.

Proof. Let P :R? — S? be the Riemann stereographic
projection, where we view S? as the unit sphere centered
at the origin of R? and R? as the hyperplane in R? that is
zero in the last coordinate. Define 7 : S2 — S? to be the
reflection of the sphere across the plane R?. Let U be the
map P~'rP, which is defined for all non-origin points
in the plane. Intuitively, U “inverts” a Fary embedding,
since any face containing the north pole in the sphere
will now contain the south pole, and hence, that face
goes from being exterior to interior.

Translate ¢ so that the origin lies inside the face.
The embedding ¢» = U¢r is an embedding of an in-
verted face F. Using Theorem 16 on ¢ gives a Fary
embedding ¢’ with the inverted F, so ¢ = U¢' restricted
to the vertices of F' is ¢p. Furthermore, F' is now an
interior face of ¢. O

We now prove Conjecture 1 for the 4-regular graphs
with diamonds.

Theorem 18 Let G be a connected 4-regular planar
graph with a diamond subgraph. Then, G has a rational
Fary embedding.

Proof. If G is not 4-edge-connected, the result follows
from Theorem 9. Otherwise, @ is a face of G1 by Corol-
lary 15. By using Corollary 17, we can construct a Fary
embedding ¢ of G such that @ is empty and has the
edge lengths prescribed in Proposition 11. ¢r is also
a valid Fary embedding for G’ since Q was drawn as a
convex quadrilateral.

The vertex vy is 3-valent in G’, so G’ is almost 4-
regular. By Corollary 4, ¢ can be approximated by a
fully-rational Fary embedding ¢’. @ is still permissible
in ¢’ by Proposition 13, and since ¢’ is fully-rational,
Proposition 12 enables us to perform a generalized 4-
addition on ¢, yielding a rational Fary embedding ¢ of
G. O

6 Conclusion

In this paper, we construct integral Fary embeddings
of some 4-regular planar graphs, making progress on a
conjecture of Biedl [2]. Perhaps surprisingly, one of the
families we prove Conjecture 1 for has triangles close
together, which seemingly make finding integral Fary
embeddings difficult. The proof unfortunately does not
extend to 4-regular graphs where the triangles are far
apart. For every 4-regular planar graph, we can add an
edge so that a diamond subgraph is formed, but undo-
ing the generalized 4-addition operation does not always
yield a 3-eliminable graph. Nonetheless, we believe that
the techniques presented here can be extended to cover
all 4-regular planar graphs.
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