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On k-Guarding Polygons
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Abstract

We describe a polynomial time O(k log log OPTk(P ))-
approximation algorithm for the k-guarding problem of
finding a minimum number, OPTk(P ), of vertex guards
of an n-vertex simple polygon P so that for every point
p ∈ P , the number of guards that see p is at least
the minimum of k and the number of vertices that see
p. Our approach finds O

(
k
ε log log 1

ε

)
size (k, ε)-nets

for instances of the k-hitting set problem arising from
the k-guarding problem. These nets contain k distinct
elements (or the entire set if it has fewer than k ele-
ments) from any set that has at least an ε fraction of
the total weight of all elements. To find a nearly op-
timal k-guarding, we slightly modify the technique of
Brönnimann and Goodrich [4] so that the weights of all
elements remain small, which is necessary for our (k, ε)-
net finder. Our approach, generalizes, simplifies, and
corrects a subtle flaw in the technique introduced by
King and Kirkpatrick [11] to find small ε-nets for set
systems arising from 1-guarding instances.

1 Introduction

In the classic art gallery problem one is given a sim-
ple polygon P in the plane and asked to find a smallest
subset G of P , called guards, so that every point p ∈ P
is seen by at least one guard g ∈ G (i.e., gp ⊆ P ). In
this paper, we allow only vertex guards, meaning G is
a subset of V , the vertices of polygon P . The original
results on this problem addressed the extremal ques-
tion of how many guards are needed to guard a simple
polygon with n vertices. Chvátal [6], answering a ques-
tion of Klee, showed that bn/3c guards are occasionally
necessary and always sufficient to guard such polygons.
O’Rourke’s book [16] and Urrutia’s chapter [18] describe
the history and subsequent flurry of results in this area.

In some applications, we would like every point in
P to be seen by more than one guard. For example,
to use triangulation to locate an intruder, his position
must be seen by at least two guards (whose locations
are different). Surprisingly, the generalization of Klee’s
question to this form of 2-guarding1 seems to have taken
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1 Belleville [1] uses the term “two-guarding” to mean guarding
the entire polygon using only two guards, which is different from
our usage.

over 30 years to appear, though, earlier, Belleville et
al. [2] addressed a different form of k-guarding where
each guard must be an interior point of a distinct edge
of P . Salleh [17] showed that b2n/3c guards are oc-
casionally necessary and always sufficient to 2-guard a
simple n-gon; and that for 3-guarding convexly quadri-
lateralizable n-gons, the bound is b3n/4c guards. A
simple proof [3, 15] follows from Fisk’s triangulation
colouring proof [8] of Chvátal’s result. If we insist that
guards must be at different vertices then there are sim-
ple polygons that cannot be k-guarded in this way for
k ≥ 4 because some points in P are seen by fewer than
k vertices. While our original motivation concerned 2-
guarding, which is always possible, our results apply
to k-guarding in general, if we only require that the
guarding do as well as it can for un-k-guardable points.
Thus we say that a subset G of the vertices of P is a
k-guarding of P if for every point p ∈ P the number of
guards that see p is at least the minimum of k and the
number of vertices that see p.

Another option is to allow multiple guards at the
same vertex. A multiset G of vertices of P is a multi-
k-guarding of P if every point p ∈ P is seen by at least
k guards in G. Since k copies of any 1-guarding is a
multi-k-guarding, kbn/3c guards are always sufficient to

multi-k-guard any n-gon, and Chvátal’s “comb”
shows they are occasionally necessary. While the small-
est multi-2-guarding is at most twice the smallest 1-
guarding, a smallest 2-guarding may be much larger.

An s-spiked fan admits a 1-guarding (black
dot) of size one and requires at least ds/2e+1 guards (all
dots) to 2-guard. On the other hand, a 2-guarding may

be smaller than twice the smallest 1-guarding .
We address the problem of finding the smallest num-
ber of vertex guards, OPTk(P ), needed to k-guard a
given simple polygon P . In Section 3, we show that
the problem is NP-hard for k > 1. Note, however, that
for certain classes of polygons such as spiral polygons,
a smallest 2-guarding can be found efficiently [3]. The
hardness of the problem motivates consideration of ap-
proximation algorithms.

For multi-k-guarding, one option is to use k copies of
a ρ-approximation of a smallest 1-guarding to produce a
kρ-approximation of a smallest multi-k-guarding. For k-
guarding, this is not an option since a k-guarding cannot
place multiple guards at a single vertex. Even a k-step
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approach that approximates an optimal 1-guarding us-
ing only vertices that don’t appear as guards in previous
steps is difficult to make work; the relationship between
the size of the resulting k-guarding and a smallest k-
guarding is not clear.

Fusco and Gupta [9] introduced the notion of (k, ε)-
nets to find k-covers of sets in the context of sensor
networks. Their result implies an O(log OPTk(P ))-
approximation algorithm for minimally k-guarding
P . Chekuri, Clarkson, and Har-Peled [5] described
a technique for set multicover with potentially dif-
ferent coverage requirements for each set that also
implies an O(log OPTk(P ))-approximation algorithm.
We describe a polynomial time O(k log log OPTk(P ))-
approximation algorithm that generalizes the tech-
nique King and Kirkpatrick [11] used to show an
O(log log OPT1(P ))-approximation algorithm for 1-
guarding P .

2 k-guarding as k-hitting

A k-hitting set of a set R of sets is a set H such that
|H∩R| ≥ min{k, |R|} for all R ∈ R. Let Vp be the set of
potential guards that can see p. Let R = {Vp | p ∈ P}.
A k-hitting set of R is a k-guarding of P .

Let V be the set of n potential guard locations. Let
w(v) be the weight of potential guard location v and
w(R) =

∑
v∈R w(v). Rather than k-hitting every set

in R, we will be happy with k-hitting the heavy sets,
those with weight at least εw(V ). Such a k-hitting set is
called a (k, ε)-net for the weighted set system (V,R, w).
The algorithm for finding a k-hitting set initially sets
these weights to 1 and updates them so that a (k, ε)-net
for the weighted set system will be a k-hitting set for
R.

Suppose we can find a (k, ε)-net for (V,R, w) of size
s(1/ε) for some function s. We slightly modify the tech-
nique of Brönnimann and Goodrich [4] to obtain a k-
hitting set of size s(4c) where c is the smallest k-hitting
set. Assume we know that c is the size of the smallest
k-hitting set. We find a (k, 1/2c)-net N of size s(2c). If
there is a set R ∈ R (called a witness) that is not k-hit,
we double the weight of the guards in R that are not
in the net N . (The italics indicate our modification.)
Since w(R) ≤ w(V )/2c, the weight of V is multiplied
by at most a factor 1 + 1/2c. If H is a k-hitting set of
size c, (H ∩R) \N is not empty and the weight of some
element in H is doubled. It follows from the proof of
Lemma 3.4 [4] that:

Lemma 1 If there is a k-hitting set of size c, the
weight-doubling process iterates at most 4c lg(n/c) times
before finding a k-hitting set.

The rest of their algorithm is a doubling search for the
correct value of c. Since the search will succeed when

the guess is at most 2c, the size of the k-hitting set is
at most s(4c). The running time is dominated by the
time for the last weight-doubling process which involves
O(c log(n/c)) invocations of the (k, ε)-net finder (and
witness finder).

King and Kirkpatrick [11] show how to find a (1, ε)-
net of size O

(
1
ε log log 1

ε

)
for the weighted set systems

arising from 1-guarding. To approximately k-guard, we
require small (k, ε)-nets for the weighted set systems
arising from k-guarding. In Section 6, we show how
to find such (k, ε)-nets of size O

(
k
ε log log 1

ε

)
. It will

be important that the weight of each element remains
small. Our modified weight-doubling process insures
this. A possible alternative is to solve a linear program
to obtain the weights before invoking an ε-net finder
once [14, 7]. However, it seems difficult to modify the
program to insure that the weights remain small enough
that our (k, ε)-net finder will produce a near-optimal k-
hitting set.

3 Hardness of k-guarding

Lee and Lin [13] show that minimally 1-guarding a sim-
ple polygon is NP-hard. We extend this result to k-
guarding for k > 1.

Theorem 2 Finding a minimum k-guarding of a sim-
ple polygon is NP-hard for all k > 1.

Proof. We reduce from the problem of minimally 1-
guarding a terrain (an x-monotone polygonal curve),
which is known to be NP-hard [12]. Given a terrain T ,
place a concave, x-monotone path v1, v2, . . . , vk−1 suffi-
ciently far above the terrain so that each vi can see all
of T . This can be done in polynomial time by inter-
secting the positive halfplanes coincident with edges of
T . Create a polygon P by connecting v1 to the leftmost
and vk−1 to the rightmost vertex of T , as shown in Fig.
1. Now P contains a k-guarding of size h if and only
if T contains a 1-guarding of size h − k + 1. Clearly,
adding v1, v2, . . . , vk−1 to any 1-guarding of T creates a
k-guarding of P . Let G be a k-guarding of P . Let ` be
the number of vi in G. Removing all vi and any k−1−`
terrain vertices from G creates a 1-guarding of T . �

Figure 1: The construction used to show k-guarding is
NP-hard (for k = 6).

A simple extension of Lin and Lee’s original proof
shows that minimally multi-k-guarding a simple poly-
gon is NP-hard, but only for odd k. Their proof is based
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on “critical locations” for guards; a guard at one loca-
tion is equivalent to assigning a variable true and at the
other to false. With odd k whichever location is given
more guards can be interpreted as the choice for the cor-
responding variable. With even k an optimal guard set
may have the same number of guards at each location.

4 Distinguished vertices

We describe in this section a method for choosing ver-
tex guards in a vertex-weighted polygon P so that any
vertex that sees a large fraction of the total weight will
be seen by k guards. The basic idea is to partition
the boundary of P into fragments of consecutive edges
so that all fragments have approximately equal weight,
and to place guards at extreme points of visibility be-
tween fragments. Lemma 3 implies that this is a good
choice of guards. In the following section, we adopt a hi-
erarchical fragmentation scheme to insure that the size
of the guard set is small.

Let ∂P denote the boundary of polygon P . We refer
to any sequence of consecutive edges on ∂P as a (bound-
ary) fragment of P . Two fragments are adjacent if they
share an endpoint. We say that a fragment f is visible
from a point p of P if there is a point q on f such that
the open line segment pq lies in the interior of P . The
extreme points of visibility of fragment f from a set of
points S are the first point in f visible from some point
in S and the last point in f visible from some point in
S. It follows from the simplicity of P that if f is visible
from p then the points on f that are visible from p span
a contiguous sector of angles centered at p determined
by the extreme points of visibility of f from p. If the
sectors of one or more visible fragments together have a
span greater than π then the corresponding fragments
are said to surround p; clearly at most one fragment
has this property in isolation. Two fragments a and
b, visible from p, are clockwise consecutive from p if the
clockwise extreme visibility angle of a coincides with the
counterclockwise extreme visibility angle of b. Suppose
that a and b are clockwise consecutive from p. Then,
if the clockwise extreme visibility point of a is no fur-
ther from p than the counterclockwise extreme visibility
point of b, then a is said to support a right tangent from
p; otherwise b is said to support a left tangent from p,
Fig. 2(a).

Following King and Kirkpatrick [11], we consider var-
ious partitions of ∂P into fragments, based in part on
the weights associated with the vertices of P . 2 For
any such fragmentation F of ∂P , we distinguish those
vertices of P that coincide with extreme points of vis-
ibility between some pair of fragments in F , Fig. 2(b).

2 As indicated earlier, there is a subtle, though significant, flaw
in the construction described in [11]. This is discussed in more
detail in Appendix A.
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Figure 2: Fragments a, b, and c are clockwise consec-
utive from p. (a) Fragment a supports a right tangent
and c supports a left tangent from p. (b) Squares are
extreme points of visibility between fragments a and c.
Filled squares are distinguished vertices.

The intuition that these distinguished vertices serve as a
good choice for guard locations is based on the following
geometric lemma:

Lemma 3 (Lemma 2 [11]) Let a and b be clockwise con-
secutive fragments of a fragmentation F , visible from a
point p, that do not surround p. If a supports a left tan-
gent from p (resp. if b supports a right tangent from p)
then p sees at least one of the distinguished vertices on
a (resp. on b).

The preceding lemma is enough to show that if p sees
many visible fragments then it must see many different
distinguished vertices, which is a generalization of King
and Kirkpatrick’s Lemma 1 for k ≥ 1:

Lemma 4 Any point p of P that sees at least 2k + 3
fragments of F in total must see a distinguished vertex
on at least k fragments.

Proof. If p sees at least 2k+ 3 fragments then it sees a
set T of at least 2k consecutive fragments each of which
cannot pair with a consecutive fragment to surround p,
otherwise there would be two disjoint pairs that both
span more than π. If a fragment in T doesn’t have a
distinguished vertex then it has no tangent from p and
its consecutive fragment(s) in T have tangents and thus
distinguished vertices, by Lemma 3. Hence, at least
|T |/2 ≥ k fragments have distinguished vertices. �

Remark. If we divide ∂P into 2k+2
ε equal weight frag-

ments where each vertex has weight 1 then it follows
that every point p that sees more than a fraction ε of
the total weight w(V ) = n, sees more than 2k + 2 frag-
ments, and by Lemma 4, must see at least k among the

set of O
(
k2

ε2

)
distinguished vertices associated with this

fragmentation. Thus the distinguished vertices form a
(k, ε)-net for the weighted set system (V,R, w(v) = 1).
It remains to find other fragmentations that will work
for more weight functions and whose associated distin-
guished vertices will provide a smaller net.
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5 A net-finder based on hierarchical fragmentation

In the last section we showed that by placing guards at

a set of O
(
k2

ε2

)
distinguished vertices associated with a

flat fragmentation of ∂P , we can ensure that any point
that sees fewer than k of these guards sees less than
an ε fraction of the total weight. In this section we
discuss how hierarchical fragmentation can be used to
reduce the number of guards required to O

(
k
ε log log 1

ε

)
.

It will suffice to prove the result for k ≤ lg(1/ε)
r lg lg(1/ε) , for a

sufficiently large constant r, since otherwise the (k, ε)-
net-finder of Fusco and Gupta [9] or Chekuri, Clarkson,
and Har-Peled [5] can be used. It will be clear that
the construction of our (k, ε)-net takes polynomial time.
(In fact, with some care, it can be constructed in O(n3)
time [10].)

We can represent the hierarchical fragmentation as a
tree. At the root there is a single fragment representing
the entire boundary ∂P . This root fragment is broken
up into a certain number of child fragments. Fragmen-
tation continues recursively until a specified depth t is
reached. The integer t is chosen so that

(t− 1) + 2t−1 < lg
1

ε
≤ t+ 2t. (1)

Note that lg lg 1
ε − 1 < t < lg lg 1

ε + 1, which implies

2t/t > lg(1/ε)
2(lg lg(1/ε)+1) >

lg(1/ε)
3 lg lg(1/ε) , (provided ε < 1/16),

which by our assumption is at least rk/3.
The number of children of a fragment f depends on

both t and the level of f in the tree. Specifically, if
e = t + 2t −

⌈
lg 1

ε

⌉
(note 0 ≤ e ≤ 2t−1), then bi, the

number of children of fragments at level i− 1, is:

bi =

{
βkt · 22

t−1+1 · 21−e , i = 1

22
t−i+1 , 1 < i ≤ t ,

where βk is a linear function of k that will be specified
later. Let φi be the number of fragments at level i.

φi =

{
1 , i = 0

βkt · 22
t−2t−i−e+i+1 , 0 < i ≤ t

since φi =
∏i

j=1 bj = βkt · 21−e ·
∏i

j=1 22
t−j+1 = βkt ·

21−e+i+
∑i

j=1 2t−j

= βkt · 22
t−2t−i−e+i+1. Note that

φt = βkt · 22
t+t−e = βkt2

dlg 1
εe ≥ βkt

1

ε
. (2)

Each collection of child fragments with the same par-
ent fragment f , together with the complement f of f ,
defines a fragmentation Ff of ∂P . The guard set, DHF ,
is the union, over all parent fragments f in the tree, of
the set of vertices that are distinguished by fragmenta-
tion Ff . The total number of guards chosen is

|DHF | ≤ 4

t∑
i=1

(
bi + 1

2

)
φi−1 ≤ b21 + 4

t∑
i=2

b2iφi−1 .

Since

b21 = (βkt · 22
t−1+1 · 21−e)2 = βkt · 22

t+t−e(βkt · 24−t−e)

< βkt · 2dlg
1
εe · (βkt · 24−t−e) ≤ 2βkt ·

1

ε
,

for 2t/t ≥ 16βk (which holds when rk/3 ≥ 16βk), and

t∑
i=2

b2iφi−1 =

t∑
i=2

biφi =

t∑
i=2

(22
t−i+1)(βkt2

2t−2t−i−e+i+1)

= βkt · 22
t−e+2

t∑
i=2

2i < βkt · 22
t+t−e+3

≤ 8βkt · 2dlg
1
εe ≤ 16βkt ·

1

ε
,

we know,

|DHF | = O

(
βk

1

ε
log log

1

ε

)
. (3)

We must now provide a generalization of Lemma 4
that works with our hierarchical fragmentation.

Lemma 5 Any point p in P that sees fewer that k ver-
tices in DHF sees no more than (8k+ 4)i+ 1 fragments
at level i of the hierarchical fragmentation.

The proof of Lemma 5 uses a potential function de-
fined on fragments. A narrow fragment is a visible frag-
ment with sector at most π. A wide fragment is a visible
fragment that isn’t narrow. The potential of a visible
fragment f (wide or narrow) is given by 2g + 1 − t,
where g is the number of guards in DHF from fragment
f that see p, and t is the number of tangents from p
to f . Note that g counts all the guards on f in DHF ,
which includes distinguished vertices in fragmentations
Fa for all descendants a of f in the tree. We call a visi-
ble fragment potent if it is wide or it is narrow and has
positive potential; otherwise we call it impotent. In ad-
dition to potent and impotent fragments, both of which
are visible to p, there are also non-visible fragments in
the tree, which we regard as having potential zero.

Lemma 6 The potential of f is at least the total poten-
tial of its children.

Proof. Let f1, f2, . . . , fc be the visible children of f .
Let gi be the number of guards in DHF from fi that see
p, and ti be the number of tangents from p to fi. We
want to show that 2g+ 1− t ≥

∑c
i=1(2gi + 1− ti). The

number of tangents to f is 2 − t and the total number
of tangents to visible fragments in Ff is c + 1. Thus
2−t+

∑c
i=1 ti = c+1, which implies

∑c
i=1(1−ti) = 1−t.

The lemma follows since 2g ≥
∑c

i=1 2gi. �

Lemma 7 An impotent fragment f has at most one vis-
ible child and that child is impotent.
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Proof. Let f be an impotent fragment with potential
2g + 1− t ≤ 0, which implies g = 0 and t ≥ 1. If f has
two visible children then the (at least one) child with
f ’s tangent contains a visible distinguished vertex by
Lemma 3, which contradicts g = 0. Thus f has at most
one visible child and, since it shares all tangents with
f , its potential is at most 1− t ≤ 0. �

Lemma 8 The number of potent fragments at any level
is at most the total potential at that level plus two.

Proof. Potent fragments have positive potential, ex-
cept for the (at most one) wide fragment that has po-
tential at least −1. �

Proof of Lemma 5. If p sees fewer than k vertices in
DHF then the potential of the root is at most 2(k−1)+1.
By Lemmas 6 and 8, the number of potent fragments at
any level is at most 2(k−1)+3. By Lemma 7, every im-
potent fragment has at most one visible child, which is
impotent. Since an impotent child cannot contain a dis-
tinguished vertex, any fragment can have at most four
impotent children (by Lemma 4 with k = 1). Thus ev-
ery potent fragment has at most four impotent children
and its other visible children all have positive potential.
Since the total number of potent fragments remains at
most 2(k − 1) + 3, the number of visible fragments in-
creases by at most 4 × # potent fragments ≤ 8k + 4
at each level. Thus the number of visible fragments at
level i is no more than (8k + 4)i+ 1. �

6 Near optimal k-guarding

The discussion of the hierarchical fragmentation scheme
in the previous section did not take into account the
weight of the vertices V of P in the weighted set system
(V,R, w). The weights play a role in the selection of the
children of a parent fragment. We choose the children
to have approximately equal weight and to contain an
integral number of vertices. Both these requirements
may be impossible to satisfy if the weights of vertices
are very different. The potential problem is that a frag-
ment at level i may have fewer than bi vertices and thus
cannot produce bi child fragments in the hierarchy. To
address this problem, we keep the weights of all vertices
small and build the tree bottom up.

Let wmax be the maximum weight of a vertex v ∈ V .
Let γ = w(V )/φt be the target weight of a leaf, i.e.
a fragment at level t in the tree. We create the tree
from the bottom up by fragmenting the perimeter of
the polygon P into φt leaf fragments where each leaf
fragment f has weight w(f) that satisfies γ − wmax ≤
w(f) ≤ γ + wmax. One way to do this is to imagine
fragmenting the perimeter into φt equal weight pieces,
which may split some vertices in two, and then putting
any vertex that is split into the last (clockwise-most)

fragment in which it occurs. As long as wmax < γ,
the resulting fragmentation has at least one vertex in
every fragment. We then combine each collection of bi
adjacent fragments (i = t) to form their parent fragment
at level i − 1 and repeat for all i down to i = 1. This
creates the tree from which we extract the set of guards
DHF . Applying Lemma 5 with i = t, choosing βk =
8k + 5, and using equations (2) and (3), we get

Lemma 9 Given a weighted set system (V,R, w) such
that w(v) < εw(V )/(βkt) for all v ∈ V where t satisfies
equation (1), the set DHF is a (k, ε)-net for (V,R, w)
of size O

(
k
ε log log 1

ε

)
.

To keep our slightly modified version of the technique
of Brönnimann and Goodrich [4] from increasing the
weight of any vertex to γ or more, we add all vertices
v of weight w(v) ≥ γ/2 to DHF . Since no such vertex
has its weight doubled, because of our modification, the
maximum weight that any vertex can attain is less than
γ. The number of such vertices is at most 2w(V )/γ ≤
2βkt

1
ε , which increases the size of DHF by only a (small)

constant factor. Our main theorem follows:

Theorem 10 For a simple polygon P with n vertices,
we can find a k-guarding set of vertices for P of size
O(kOPTk(P ) log log OPTk(P )), where OPTk(P ) is the
size of the minimum k-guarding set of vertices for P , in
time polynomial in n.

7 Extensions and open questions

We have shown how to get an O(k log log OPTk(P ))-
approximation to the minimum k-guarding of a sim-
ple polygon P . This improves the O(log OPTk(P )-
approximation algorithms of Fusco and Gupta [9] and
Chekuri, Clarkson, and Har-Peled [5], when k =

o
(

log OPTk(P )
log logOPTk(P )

)
. It would be interesting to know if

the dependence on k in our algorithm can be eliminated
or reduced.

Our version of k-guarding models situations in which
the guarding requirement of every point of P is the
same. We addressed the non-uniformity that arises sim-
ply because points of P may not see as many as k ver-
tices of P , by reducing the guarding requirement of a
point p to the minimum of k and the number of vertices
that see p. In general, a uniform guarding requirement
might be undesirable for other reasons as well; some
(perhaps most) points may not need to be guarded at
all, whereas others may need extraordinary attention.
To capture this variety, we suppose that all points p ∈ P
have an associated non-negative guarding demand d(p),
and we seek a demand-guarding of P , a guard set G that
satisfies the individual guarding demand of every point
in P . The associated optimization problem takes as in-
put a pair (P, d) and asks for a minimum size demand-
guarding of P .
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In fact, the O(log OPT)-approximation algorithm of
Chekuri, Clarkson, and Har-Peled [5] addresses this
more general demand-guarding problem, where OPT
denotes the size of the optimal demand-guarding set.
Obviously, our algorithm could be used to provide an
O(dmax log log OPTdmax

)-approximation (by increasing
all demands to dmax). However, since our algorithm
never exploits the uniformity of guarding demands, it
is straightforward to confirm that, essentially with-
out modification, it provides an O(dmax log log OPT)-
approximation. Once again, it would be interesting to
know if the dependence on dmax can be eliminated or
reduced.

Our k-guarding problem assumes that (i) all of the
vertices of the polygon are potential guard locations,
and (ii) the polygon has no holes. It would be interest-
ing to determine if our techniques can be used to get
good approximation algorithms when these constraints
are relaxed.

Existing NP-hardness proofs for minimally 1-
guarding polygons extend easily to show that minimally
multi-k-guarding simple polygons is NP-hard when k is
odd. It seems likely that minimally multi-k-guarding is
NP-hard when k is even as well.

There is no known non-trivial lower bound on the
ratio between the sizes of a minimum k-guarding and a
minimum 1-guarding of a polygon. What is the precise
relationship between these two values? Are there classes
of polygons where the size of a minimum 2-guarding is
not much larger than a minimum 1-guarding?
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A Remark on the hierarchical fragmentation con-
struction of King and Kirkpatrick [11]

A very similar hierarchical fragmentation (differing from
ours only in the definition of t, and in the level-1 frag-
mentation factor b1) was described by King and Kirk-
patrick [11] in developing their approximation bound
for optimal 1-guarding. Unfortunately, the choice of α
(which, together with t determines b1) given in their
equation (3) does not always guarantee that their equa-
tion (1) holds. In particular, consider the case when

1/ε = 22
t−1+1 (so t = dlog log(1/ε)e, as specified). In

this case, α = 1/(4t22
t−1+1−t) and so tα22

t

(the bound
on |SHF |, the size of their guard set) is essentially 2t·1/ε,
which is Θ((1/ε) log(1/ε)), not O((1/ε) log log(1/ε)), as
claimed in their equation (1).


