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Computational geometry, as a branch of the theory of computer science, designs and analyzes data structures and
algorithms most often for a RealRAM model, which has three unbounded quantities: the time its program can run,
the number of memory cells, and the number of bits that can be stored in each cell. Since actual computers have
constraints for time and memory — constraints that change as technology advances — we follow the computer science
tradition of developing our algorithms to minimize time and memory size, measured using the familiar asymptotic,
big-O notation, and tacitly agreeing not to exploit the third unbounded quantity in our model. (Exceptions published
with capitalized words in the title [3] merely prove the rule.)

Actual computers, however, do not faithfully implement the abstractions of an infinite real
number line or Euclidean plane. For example, the floating point coordinates calculated as the
intersection of two line segments may lie on neither line!

For many numerical calculations, we are happy with approximate answers—our input may
be accurate to only five decimal places, so the best we may hope for is an answer within £1075.
But geometric tests usually ask for the exact sign of a calculation on coordinate values—the
closer an answer is to zero, the more bits of accuracy are needed. Because efficient geometric
algorithms infer the results of many tests from the few tests that they perform, an incorrect test
can cause catastrophic failure in rare, and therefore almost impossible to debug, cases.

The most common way to address these problems is to build geometric algorithms on top of

some library that more faithfully implements the abstraction of computation on real numbers, Figure 1: In
as done in LEDA, CGAL, and Core, and by numerous research papers on floating point filters, floating point, ¢
interval and affine arithmetics, and lazy evaluation [2, 5]. is below ac, bd.

This talk is about a less common way: by including into the machine model some notion of the precision required
by a computation (in the form of the degree of a polynomial whose sign is being evaluated) it allows the algorithm
designer to consider precision as a resource, just as we traditionally consider memory and running time as resources
and try to find algorithms that minimize their use. This Degree-Driven Algorithm Design (DDAD) was proposed in a
1999 paper of Liotta, Preparata, and Tamassia [4]. My this talk summarizes NSF-funded work on their program with
several students, including David Millman, Andrea Mantler, Clinton Freeman, Sajal Dash and Vince Miller.

T’ll give examples of the algorithm development process under this model for map overlay or polygon boolean
operations via a simpler implementation of red/blue line segment intersection that takes n line segments and computes
their k intersections in order along each segment using ©(nlogn + k) time and double precision. The classic Bentley-
Ottmann algorithm [1] takes ©((n + k) logn) and five-fold precision. I'll also give some other examples of favorites:
digital hulls, distance transforms, and Voronoi diagrams, demonstrating how incorporating precision as an additional
constraint or optimization target gives us a chance to re-visit standard problems, and inspires new solutions, and
carries proof down to the implementation level.
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