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A Linear Time Euclidean Spanner on Imprecise Points
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Abstract

An s-spanner on a set S of n points in Rd is a graph on S
where for every two points p, q ∈ S, there exists a path
between them in G whose length is less than or equal
to s · |pq| where |pq| is the Euclidean distance between
p and q. In this paper, we consider the construction
of a Euclidean spanner for imprecise points where we
take advantage of prior, inexact knowledge of our in-
put. In particular, in the first phase, we preprocess n d-
dimensional balls with radius r that are approximations
of the input points with the guarantee that each input
point lies within its respective ball. In the second phase,
the specific points are revealed and we quickly compute
a spanner using data from the preprocessing phase. We
can compute (or update) the (1 + ε)-spanner in time
O(n(r+ 1

ε )d log(r+ 1
ε )) after O(n(r+ 1

ε )d logα) prepro-
cessing time where α is the ratio between the furthest
and the closest pair of points. Our algorithm does not
have any restrictions on the distribution of the points.
It is the first such algorithm with linear (update) run-
ning time.

1 Introduction

While in classical computational geometry all input val-
ues are assumed to be accurate, in the real world this
assumption does not always hold. Aside from measure-
ment errors or human errors that are always inherent to
any data, there are a few scenarios in emerging appli-
cations in which only approximate locations are known
and from time to time more accurate positions are given.
GPS units are generally power hungry and are typically
not kept on all the time to save energy. It is common
practice to only turn on GPS periodically and, in be-
tween the snapshots, interpolate or extrapolate the de-
vice’s positions based on the speed of the user. In an-
other application, a user’s location data might be per-
turbed in an attempt to protect user privacy. Here, a
random nearby location, instead of the user’s true loca-
tion, is reported to location based services, as in [20].
These are the major motivating applications for this pa-
per.
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Models on Imprecise Points The ways to model im-
precise input can vary greatly based on the interpreta-
tion of the nature of uncertainty the data may contain.
There are models that are tailored to address input data
imprecision or limitations of data representation, where
the exact values may never be known [11, 13, 15, 18].
Other approaches involve computing the boundary cases
based on the bounds of the input [15] and computing a
distribution of solutions when given a probability distri-
bution of the input set [13]. Yet another case assumes
a superset of the input is known [4].

A popular model assumes that some knowledge of the
location of each input point is known ahead of time. Ini-
tially, instead of a point, a region where each input point
may lie is known. The shape (lines [8], circles/balls
[1, 6, 12, 14], fat regions [3, 19], etc.) of the region
can vary as well as constraints such as the amount of
overlapping regions allowed. Algorithms that operate in
this model have two phases. The first is a preprocess-
ing phase where the input regions are processed in such
a way as to aid the second phase. The second phase,
also called the query phase, occurs when the precise lo-
cations of the input points are known and the result is
computed usually using some structure from the pre-
processing phase.

Spanners and Proximity Queries In this paper we are
interested in the maintenance of a Euclidean spanner
and proximity queries using the spanner. Given a set P
of n points in Rd, a Euclidean (1 + ε)-spanner defines
a graph G (often a sparse graph with a linear number
of edges) on the points, each edge weighted by the Eu-
clidean length, such that the shortest path between any
two points u, v in the graph is at most 1 + ε times the
Euclidean distance of u, v. Thus one can consider the
spanner as a sparse backbone that approximates all of
the pairwise distances. For this reason, a spanner can
be used to answer many proximity queries such as clos-
est pair, approximate nearest neighbor (given a point q,
find a point p ∈ P that is at most (1 + ε) · d away from
q, where d is the distance from q to its closest point in
P ), and approximate clustering.

Spanners have been studied for many years. Numer-
ous algorithms have been developed to compute a span-
ner, see the survey [7] or the recent book [16]. Almost
all previous work assume that the precise positions of
the points are known. We present our results below
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and compare with the only previous work on spanners
for imprecise inputs.

Our Results In the model our algorithm operates in,
an imprecise point p is defined to be a disk or a d-
dimensional ball centered at a point ṗ with radius r.
The assumption is that initially, the only information
of an input point is ṗ and r and that later, the pre-
cise location of the point p̂ (located somewhere within
the corresponding ball) is revealed. Our algorithm
preprocesses a set S = {p1, p2, . . . , pn} of n impre-
cise points in O(n(r + 1

ε )d logα) time such that when

Ŝ = {p̂1, p̂2, . . . , p̂n} is available, we can compute a
(1 + ε)-spanner in O(n(r+ 1

ε )d log(r+ 1
ε )) time where d

is the dimension of the input. Without loss of generality
we scale our input such that the distance between the
closest pair of centers is 1 and thus α is the diameter of
the centers of the imprecise points. It is important to
note that our algorithm will accept input sets with over-
lapping points of any depth. In the applications that we
are interested in, r is typically a small constant.

Related Work Previous work on algorithms for im-
precise points can be classified by objective (convex
hull [8], triangulation [12, 19], Delaunay triangula-
tion [3, 6, 14], etc) and shape of imprecise regions (lines
[8], circles/balls [1, 6, 12, 14], fat regions [3, 19], etc.).
Most of the algorithms aim for linear or almost linear
running time for the second phase, when the precise lo-
cations are given. Notice that a linear running time is
the best we can hope for, as one would need linear time
to simply scan the input.

Our construction algorithm modifies a dynamic span-
ner which has been well studied before [2, 9, 10, 17].
However, since previous work focuses on optimizing the
insertion/deletion of single points, the time needed to
update the entire spanner for all imprecise points is su-
perlinear.

The only known previous work for spanners on im-
precise points is done by Abam et. al. [1]. They
provided an algorithm to construct a (1 + ε)-spanner
from a set of n imprecise points in O(n/εd) time after
O(n log n) preprocessing time, in which the imprecise
points are assumed to stay in n pairwise disjoint unit
balls in d-space. In the preprocessing phase, the well-
separated pair decomposition of the centers of the balls
is computed, in time O(n log n) [5]. When the specific
points are known, the spanner is constructed by creat-
ing an edge between every pair of well-separated sets.
Since there are O(n/εd) edges in the spanner, this phase
takes O(n/εd) time. They also provide a variation for
inputs of different sizes, however this version runs in
O(n log n/ε2d) time in the second phase after O(n log n)
preprocessing.

In comparison with our results, we remark that the

above algorithm requires that the imprecise regions are
disjoint. If the closest pair of centers is defined to have
distance 1, the input requires r to be at most 1/2.
The version with varying sized imprecise regions allows
higher values of r but the update cost has an extra d on
the exponent. Our algorithm accepts imprecise points
with overlapping regions and allows the user a degree of
control over the running time by trading efficiency with
the size of the imprecise region.

2 Background

The algorithm we present constructs a (1 + ε)-
spanner or more specifically the deformable spanner
(DefSpanner) as described in [9]. A defspanner is a
specific (1 + ε)-spanner construction that is designed to
be easily modified and updated. More specifically, for a
set of points S in Rd, the defspanner G is made up of a
hierarchy of levels Gdlog2 αe ⊆ Gdlog2 αe−1 ⊆ · · · ⊆ Gi ⊆
Gi−1 ⊆ · · · ⊆ G0 = S where the top level Gdlog2 αe con-
tains only one point and the bottom level G0 contains
all points in S.

The aspect ratio α of S is defined as the ratio of the
distance between the furthest and closest pair of points
in S. Since we scale all values such that the distance
between the closest pair of imprecise centers is 1, α is
also the diameter. Note that r is scaled as well. There is
no restriction for the distance between the closest pair
of precise points.

Any set Gi is a maximal subset of Gi−1 where for
any two points p, q ∈ Gi, |pq| ≥ 2i. Let p(i) denote the
node p in level i given that p ∈ Gi. We say a point
p(i) covers a point q(i−1) if |pq| ≤ 2i. While a point
q(i−1) may be qualified to be covered by several points
in the level above, we arbitrarily designate one of these
points (say p(i)) as its parent by p(i) = P (q(i−1)) and
say that q(i−1) is the child of p(i). The exception is
if q ∈ Gi, then P (q(i−1)) = q(i). We denote P k(p(i)) =
P (P k−1(p(i))) to be the ancestor of p(i) at k levels higher
and define P 0(p(i)) = p(i). When p has no superscript,
we assume that P (p) 6= p or intuitively, that p is in the
highest level it resides in. We also denote Ci−1(p) =
{q ∈ Gi−1|P (q) = p} as the set of children of p(i) in level
i−1. By a packing argument (shown in [9]), |Ci−1(p)| ≤
5d. Note that for any point p, |P i(p(0))p| ≤ 2i+1. See
Figure 1(a) for an illustration of these rules.

The edges of a Defspanner of a set S are deter-
mined by connecting all nodes within distance c · 2i in
all levels, where i is the level and c is a constant. Such
pairs are called neighbors at level i. The neighbors of
p at level i are denoted by Ni(p). As shown in [9],
|Ni(p)| ≤ (1 + 2c)d − 1. The total number of edges in
a DefSpanner is less than 2(1 + 2c)dn. Note that two
nodes can be neighbors in multiple levels and that an
edge is always constructed between every parent-child
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pair. The family tree metaphor is extended to define
cousins as two points whose parents are neighbors. If
two points are neighbors, they are also cousins as their
parents must be neighbors as well.

A path between two nodes in a Defspanner that is
less than or equal to 1+ ε times their euclidean distance
can be found by traversing up the hiearachy from both
nodes until a mutual link is found. This is illustrated
in Figure 1(b). We refer to [9] for a proof and more
details.

Now we state a property of a DefSpanner that will
be useful later.

Lemma 1 For a node p ∈ Gi, let q ∈ Gi+1 be another
node such that |pq| ≤ (c − 1)2i+1. The nodes P j(p(i))
and P j−1(q(i+1)) must be neighbors (or the same node)
for all j ≥ 1, i.e., the ancestors of p and q must be
neighbors (or converge) in all levels above i.

Proof. It is given that |pq| ≤ (c − 1)2i+1. By
the definition of a DefSpanner, |P j(p(i))p| ≤
2i+j+1 − 2i+1 and |P j−1(q(i+1))q| ≤ 2i+j+1 − 2i+2.
Thus, |P j(p(i))P j−1(q(i+1))| ≤ |P j(p(i))p| + |pq| +
|P j−1(q(i+1))q| ≤ 2i+j+1−2i+1 + (c−1)2i+1 + 2i+j+1−
2i+2 = 4·2i+j+(c−4)2i+1 ≤ 4·2i+j+(c−4)2i+j = c·2i+j .
Therefore P j(p(i)) and P j−1(q(i+1)) must be neighbors
or the same node in level i+ j. �

3 Algorithm Description

Let S = {p1, p2, . . . , pn} be a set of imprecise points
where for pi, ṗi is the center, r is the radius, and p̂i is an
instance of pi, i.e., |ṗip̂i| ≤ r . Let Ṡ = {ṗ1, ṗ2, . . . , ṗn}
and Ŝ = {p̂1, p̂2, . . . , p̂n}.

3.1 Preprocessing

In the preprocessing phase, we are initially given Ṡ and
r. We create a DefSpanner Ġ with the point set Ṡ as
in [9]. Here we choose c = 2r + 16

ε + 4. The running
time is O(n(r + 1

ε )d logα).

3.2 Spanner Construction

When the true positions of the points are revealed, we
will update the spanner. We construct a DefSpanner
Ĝ for Ŝ by inserting the points one by one into Ĝ. That
is, Ĝ is initially empty and we gradually create the hi-
erarchy by expanding downwards.

An ordered list is maintained of the remaining points
yet to be inserted into the spanner. When we begin, this
list contains all of the nodes in the order they appear in
the hierarchy in Ġ, from highest to lowest. So all nodes
in level i are placed right before all nodes in level i− 1.
Parents in Ġ will always appear before their children.
After all nodes in level i have been inserted, we create
level i− 1 before adding the next node. Here each node

at level i is repeated at level i− 1 with itself as the par-
ent. As we continue to insert nodes into Ĝ, we may add
levels to Ĝ that are beyond the range of levels in Ġ – if
the exact locations are closer than 1 for instance. Dur-
ing the insertion process for a node, we may find that
it is necessary to move the node up or down the hierar-
chy. If a node is demoted to l, a lower level, l does not
exist yet. Instead of creating more levels immediately,
the point is removed from Ĝ and is reinserted into the
list of remaining points right before all the other nodes
in level l. Therefore, we wait until all levels above l are
filled before inserting this node.

The algorithm terminates when all points are in-
serted. In some sense we are rebuilding the hierarchy
for Ĝ by referring to the hierarchy of Ġ. We would like
to reuse the structure of Ġ as much as possible. We
elaborate the procedure below.

We assume that p̂ is at the beginning of the list, and
we want to insert p̂ into Ĝ. We insert p̂ into the bottom
level of Ĝ. Let’s call this level i. There are three phases
in our algorithm as described below.

Step 1: Check for demotions. First, we compare the
distances between p̂ and all of its neighbors in Ġ that
have been inserted in Ĝ. If |p̂q̂| < 2i, where q̂ is a
neighbor of p̂, then p̂ is too close to q̂ and violates one
of the properties of a DefSpanner. Therefore, we must
move p̂ to a lower level. We can calculate this level to
be l, where 2l ≤ |p̂q̂| < 2l+1 and q̂ is the closest node to
p̂. As discussed earlier, this level does not exist yet, so
we must delay the insertion of p̂. Meanwhile, we denote
c(p̂) = q̂, the potential parent of p̂.

When we try to reinsert a demoted node such as p̂, we
still need to check that it does not need to be demoted
again. Since demoted nodes are reinserted into Ĝ before
other nodes in the same level, a node can only be de-
moted by another previously demoted node. Therefore,
we only need to test the previously demoted cousins of
p̂ (through c(p̂)) for possible demotion. We can strate-
gically place pointers to keep track of these previously
demoted nodes.

Step 2: Find a parent. Now we determine the parent
of p̂. If c(p̂) has been defined for p̂, then we assign
P (p̂) = c(p̂). As mentioned in step 1, in this case p̂
was demoted from a higher level and is now reinserted
into level i so |p̂c(p̂)| ≤ 2i+1. If c(p̂) is not defined,
we need to search for the parent of p̂. First we define
the point up̂, the starting point for parent search, and
prove a property of it. For this purpose we refer to the
spanner Ġ. Let up̂ = q̂ where q̇ = P (ṗ) in Ġ. Notice
that we must have at least attempted to insert q̂ in the
new spanner. If q̂ is not in level i + 1 (q̂ may have
been demoted), then we let up̂ = P (q̂). If q̂ has not
been inserted yet (an insertion was attempted but q̂
was demoted and has not been reinserted yet), then let
up̂ = c(q̂).
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Figure 1: (a) The neighbors of p in level i include q, s, and P (p). P (p) must also be in level i + 1. Since we have
denoted p’s parent to be another node, we know that p is not in level i+ 1. This diagram does not specify if q, r, or
s are also in level i + 1. (b) A path between p and q that fulfills the (1 + ε)-spanner property. There is no mutual
link between P i−1(p) and P i−1(q).

Lemma 2 Let p̂ be a node inserted in to Ĝ at level i.
P (p̂) ∈ Nj(P j−i−1(up̂)) for some j ≥ i + 1 or does not
exist. That is, the parent of p̂ is a neighbor of up̂, or
a neighbor of an ancestor of up̂, or does not exist (in
which case p̂ belongs at the top of the hierarchy).

Proof. Define q̂ such that q̇ = P (ṗ) in Ġ. We know that
up̂ may be one of three nodes, q̂, P (q̂), or c(q̂). We know
that |p̂q̂| ≤ 2i+1 + 2r, |p̂P (q̂)| ≤ |p̂q̂|+ |q̂P (q̂)| ≤ 2i+1 +
2r+2i+1, and |p̂c(q̂)| ≤ |p̂q̂|+ |q̂c(q̂)| ≤ 2i+1 +2r+2i+1.
Since all of these distances are less than or equal to
(c− 2)2i+1, we can invoke Lemma 1. Therefore, for all
cases of up̂, P (p̂) and P j−i−1(up̂) must be neighbors for
some j ≥ i + 1 or p̂ is at the top and P (p̂) does not
exist. �

By Lemma 2, in order to find the parent of p̂ we must
search neighbors of up̂ and neighbors of ancestors of up̂.
More specifically, P (p̂) is the lowest node in this set
such that |p̂P (p̂)| < 2j+1 where p̂ is in some level j ≥ i
and P (p̂) is in level j + 1. We search for P (p̂) from
bottom up, first searching all neighbors of up̂ in one
level before moving upward to the next level. The first
node that fulfills the parent requirement is selected to
be p̂’s parent. As we move up the hierarchy in search of
P (p̂), we promote p̂ up the hierarchy as well. For each
level j that p̂ is promoted to, we let P (p̂(j−1)) = p̂(j).
If p̂ reaches the top of the hierarchy, then we know that
p̂ has no parent and p̂ becomes the parent of the node
that was previously at the top.

Step 3: Find all neighbors. In this step we find the
neighbors of p̂ for every level it resides in. If p̂ lies in
the highest level of the graph, then the only neighbor p̂
has is itself. Otherwise, all neighbors of p̂ in a level must
also be a cousin (children of neighbors of P (p̂)) of p̂ in
the same level. This is trivial to prove. Therefore, we
only need to search among the cousins of p̂ to determine
if they are neighbors. If |p̂q̂| < c · 2j where p̂ and q̂ are
cousins in level j, then we denote p̂ and q̂ to be neighbors

and create a link between the two nodes. Note that if
we have promoted p̂, we need to repeat our search in all
levels p̂ resides in. This search is executed top down in
the hierarchy. After all neighbors of p̂ are found in all
levels, we conclude the insertion process for p̂.

When a new level is created below the bottom level j,
we have to maintain our structure. To do this, all nodes
in level j are copied to the new level j−1 and neighbors
in level j are searched to find neighbors in level j − 1.

After all nodes are inserted, it is possible that we need
to demote a node below G0. In this case, we can simply
add more levels to the bottom of the hierarchy. It is
also possible that we promote so many nodes such that
lower levels are redundant. In this case, we can delete
the redundant levels.

The following theorem concludes with the correctness
of the algorithm.

Theorem 3 This algorithm creates a correct DefS-
panner Ĝ of Ŝ.

Proof. First, we argue that our algorithm terminates.
A node may not be demoted by the same node more
than once. Therefore the number of demotions is
bounded, all nodes are inserted into Ĝ and the algo-
rithm terminates.

In a DefSpanner, in every level, all points must be
sufficiently far apart and every point has a designated
parent (except for the topmost node) and links to all
neighbors. We argue that, our algorithm, after each
point is inserted into Ĝ, constructs a graph that fulfills
all of these properties.

The distance between every pair of nodes in any level
i must be greater than or equal to 2i. We prove this by
contradiction. Let us assume that two points p̂ and q̂
are too close in some level i, that is |p̂q̂| < 2i. Without
loss of generality, let us assume that p̂ is inserted after
q̂ which also means that p̂ has been inserted into a level
that q̂ resides in. If |p̂q̂| < 2i then |p̂q̂| < 2j must be
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true for any level j ≥ i and specifically the level that p̂
is inserted into. Here we have a contradiction because
in our algorithm, p̂ would have been demoted down to
a level i where |p̂q̂| ≥ 2i.

Now we must show that every node in every level has
a designated parent. When a point p̂ is inserted into Ĝ,
either c(p̂) is assigned to be the parent of p̂ or neighbors
of ancestors of up̂ are searched for P (p̂). By Lemma 2, if
the latter is the case, we know that P (p̂) must be found
or p̂ is promoted to the top of the hierarchy. The parent
for each node in the lower levels is the same node in the
level above. This is assigned when a node is promoted
up the hierarchy or when a level is added to the bottom
of the hierarchy.

This leaves showing that the neighbors for each node
in all levels are found. For any pair of nodes that are
neighbors, the connection is made when the second node
is inserted into the graph. In the third step, after the
parent of the second node is found, the algorithm then
finds the first node among the second node’s cousins and
creates the link between the two. �

4 Analysis

The cost of preprocessing is the DefSpanner construc-
tion cost or O(n(r+ 1/ε)d log2 α) [9]. The running time
of our algorithm is bounded by the cost of inserting each
node, and the cost of adding new levels to the bottom
of the hierarchy.

There are three distinct phases during the insertion
of a node: checking for demotion, finding the parent,
and finding the new neighbors. We will bound the cost
of the three phases separately.

Lemma 4 The number of comparisons conducted while
determining whether a node should be demoted is
O(n(r + 1

ε )d).

Proof. The first step of inserting a node p̂ is to check
the distance between p̂ and all of its previous neighbors
in Ġ to determine if any two nodes are too close and if
so, p̂ is to be demoted. According to our algorithm, if a
node p̂ is demoted, then the next time it is inserted into
Ĝ, it is generally inserted before other nodes in that
level are inserted. This way, if there is another node
that is too close to p̂, then the other node is demoted
instead of p̂. Therefore, for the majority of demoted
nodes, they are only demoted once.

The only case where a node is demoted more than
once is when two nodes are demoted to the same level
and when they are reinserted, they are found to be too
close and one of the two nodes is demoted again. In this
case, if we let the other node be q̂ and the level the two
nodes are reinserted to be i, then |ṗq̇| ≤ |p̂ṗ| + |p̂q̂| +
|q̂q̇| ≤ 2r + 2i ≤ c · 2i ≤ c · 2j for some j > i where
ṗ, q̇ ∈ Ġj and either ṗ /∈ Ġj+1 or q̇ /∈ Ġj+1. Then ṗ and

q̇ must be neighbors in level j. Since one of the nodes
has been demoted before the other was inserted, p̂ and
q̂ have not been compared yet in the construction of Ĝ.
Therefore, the total number of comparisons is bounded
by n times the number of neighbors a node may have in
one level.

Note that previously, we mentioned that the number
of neighbors a node has on one level is bounded by (1 +
2c)d − 1. Given our definition of c, this is O((r + 1

ε )d).
Thus, the number of comparisons is bounded by O(n(r+
1
ε )d). �

Lemma 5 Two nodes can be neighbors in at most
O(log (r + 1

ε )) levels.

Proof. Let p̂ and q̂ be two nodes that are only neigh-
bors in levels j to i, j ≤ i. Since p̂ and q̂ are both in
level i and are neighbors in level j, 2i ≤ |p̂q̂| ≤ c · 2j .
From this, we can bound the number of levels p̂ and
q̂ are neighbors in, i − j + 1, by log c + 1. Therefore,
the maximum number of levels that two nodes can be
neighbors in is log c+ 1 = O(log (r + 1

ε )).
�

Lemma 6 Let p̂ be a node inserted into Ĝ at level i and
let j be the highest level it resides in. In levels i + 1 to
j−1, p̂ and all neighbors of ancestors of up̂ are cousins.

Proof. For a level k, i+1 ≤ k ≤ j−1, p̂ is in level k+1
and P k−i−1(up̂) is the ancestor of up̂ in level k. Let q̂ be
a node in level k that is also neighbor of P k−i−1(up̂). We
need to show that the parents of p̂ and q̂ are neighbors
in level k + 1.

From Lemma 2 we know that |p̂up̂| ≤ (c − 2)2i+1.
We can determine the distance between p̂ and q̂ to be
|p̂q̂| ≤ |p̂up̂| + |up̂P k−i−1(up̂)| + |q̂P k−i−1(up̂)| ≤ (c −
2)2i+1 + 2 · 2k − 2i+2 + c · 2k. Using this information,
we can determine the distance between the parents of p̂
(which is itself) and q̂ to be |p̂P (q̂)| ≤ |p̂q̂| + |q̂P (q̂)| ≤
(c− 2)2i+1 + 2 · 2k − 2i+2 + c · 2k + 2k+1 = (c− 4)2i+1 +
(c+ 4)2k ≤ (c− 4)2k + (c+ 4)2k = c · 2k+1. Therefore,
the parents of p̂ and q̂ are neighbors in level k + 1 and
p̂ and q̂ are cousins in level k.

�

Lemma 7 The total cost of finding the new neighbors
of all nodes during their insertion is O(n(r+ 1

ε )d log(r+
1
ε )).

Proof. For a node p̂ inserted into level i and promoted
to level j, the search for p̂’s neighbors begins after the
parent has been found. First, the cousins of p̂ in level
j are searched for neighbors. Since, a, the maximum
number of children a node can have is bounded by 5d,
this takes O((r + 1

ε )d) time. For all nodes, it takes
O(n(r + 1

ε )d) time. Then the cousins in levels below
j are checked for neighbors. We can bound the number
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of nodes we check by charging each cousin to the neigh-
bor link between p̂ and the cousins’ parent. We charge
a operations to each link. By Lemma 5, we know that
each edge in Ĝ represents a neighbor link between two
nodes in O(log (r + 1

ε )) levels. When we take into ac-
count the time it takes to find neighbors for all nodes,
we can bound all operations (that do not include finding
neighbors of a node in the highest level it resides in) by
the number of edges in Ĝ multiplied by O(a log (r + 1

ε )).

The number of edges in Ĝ is bounded by O(n(r+ 1
ε )d).

The total time it takes to find the new neighbors of all
nodes is O(n(r + 1

ε )d) + O(5d · n(r + 1
ε )d log(r + 1

ε )) =
O(n(r + 1

ε )d log(r + 1
ε )). �

Lemma 8 The total cost of inserting all nodes into Ĝ
is O(n(r + 1

ε )d log(r + 1
ε )).

Proof. We have already proved time bounds for two
phases of insertion: checking for demotions (O(n(r +
1
ε )d) by Lemma 4) and finding new neighbors (O(n(r+
1
ε )d log(r + 1

ε )) by Lemma 7). All that we need to do
is to bound the time spent searching for the parents of
the nodes during insertion. By Lemma 6, we note that
for a node p̂ where p̂ ∈ Ĝj , p̂ /∈ Ĝj+1, all nodes that we
test as a possible parent in all levels below j are also
checked as possible neighbors. All nodes that we test as
a possible parent in level j+1 for a node p̂ can be bound
by the number of neighbors up̂ can have or O((r+ 1

ε )d).
Therefore, for all nodes, the time it takes to find the
parents is O(n(r+ 1

ε )d)+O(n(r+ 1
ε )d log(r+ 1

ε )). When
we add up all costs of insertion, the term that dominates
is O(n(r + 1

ε )d log(r + 1
ε )). �

Lastly, we need to consider the time it takes to add
new levels to the bottom of the hierarchy while the span-
ner is built.

Lemma 9 The cost of adding new levels to the bottom
of the hierarchy during spanner construction is O(n(r+
1
ε )d log (r + 1

ε )).

Proof. Each time a new level is added to the bottom
of the hierarchy, all nodes on the bottom level are com-
pared to all of their neighbors. By Lemma 5, the maxi-
mum number of times that two nodes may be compared
is the maximum number of levels they are neighbors in
or O(log (r + 1

ε )). Since the number of edges in a Def-
Spanner represents the number of neighbor pairs, the
total cost is O(n(r + 1

ε )d log (r + 1
ε )). �

Now we can finalize our analysis.

Theorem 10 The entire algorithm after preprocessing
takes O(n(r + 1

ε )d log(r + 1
ε )).

Proof. Summing the costs of inserting all nodes
(Lemma 8) and creating new levels (Lemma 9), the
entire algorithm takes O(n(r + 1

ε )d log (r + 1
ε ) + n(r +

1
ε )d log(r + 1

ε )) = O(n(r + 1
ε )d log(r + 1

ε )). �

5 Conclusion

We have presented an O(n(r+ 1
ε )d log(r+ 1

ε )) time algo-
rithm to construct a (1+ε)-spanner with O(n log(α)(r+
1
ε )d) preprocessing, when the accurate positions of the
points are revealed and each point is at most distance
r from its old position. There are many applications of
a DefSpanner [9]: well-separated pair decomposition,
all near neighbors query, (1 + ε)-nearest neighbor, clos-
est pair and collision detection, and k-center. Note that
our algorithm for constructing the DefSpanner will
immediately imply that given the accurate positions we
can immediately get a structure for the above problems
in linear running time.
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