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Abstract

The classical sphere packing problem asks for the best
(infinite) arrangement of non-overlapping unit balls
which cover as much space as possible. We define a gen-
eralized version of the problem, where we allow each ball
a limited amount of overlap with other balls. We study
two natural choices of overlap measures and obtain the
optimal lattice packings in a parameterized family of
lattices which contains the FCC, BCC, and integer lat-
tice.

1 Introduction

Sphere packing and sphere covering problems have been
a popular area of study in discrete mathematics over
many years. A sphere packing usually refers to the ar-
rangement of non-overlapping n-dimensional spheres. A
typical sphere packing problem is to find a maximal
density arrangement, i.e., an arrangement in which the
spheres fill as much of the space as possible. On the
other hand, sphere covering refers to an arrangement of
spheres that cover the whole space. Overlap is not only
allowed in these arrangements, but inevitable. In this
case, the aim is to find an arrangement that minimizes
the density (i.e., the total volume of the spheres divided
by the volume of the space).

In dimension 2, the densest circle packing and the
thinnest circle covering are both attained by the hexag-
onal lattice [9]. In dimension 3, Hales [7] has recently
given a computer-assisted proof showing that the face-
centered cubic (FCC) lattice achieves the densest pack-
ing even when the sphere centers are not constrained to
lie on a lattice. The thinnest covering in dimension 3 is
achieved by the body-centered cubic (BCC) lattice [1],
but it is not known yet if one can improve the covering
by allowing non-lattice arrangements. In dimension 4
and higher, the situation is more complicated and even
less is known; see [2] for a comprehensive summary.

Although sphere packing and sphere covering prob-
lems have attracted a lot of attention by mathemati-
cians, the arrangements of spheres encountered for ex-
ample in modeling in the biological sciences usually fall
between sphere packing and sphere covering: Models
consist of overlapping spheres, which do not fill the
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whole space, and one is often interested in maximal den-
sity configurations of spheres where we allow a certain
amount of overlap. Examples are the spatial organi-
zation of chromosomes in the cell nucleus [3, 12], the
spatial organization of neurons [10, 11], or the arrange-
ment of ganglion cell receptive fields on the retinal sur-
face [4, 8]. The wide applicability is also based on the
fact that soft spheres can be modeled as hard spheres
with limited overlap. In all these applications one would
like to understand the optimal packing configuration of
spheres when allowing a certain amount of overlap.

In this paper, we study this problem between sphere
packing and sphere covering for the special case when
the sphere centers lie on a particular family of lattices
obtained by diagonally distorting the integer grid: Let
δ > 0 be a distortion parameter. Then the lattice Lδ
is defined by mapping each unit vector ei ∈ Rn, i =
1, . . . , n, to

eδi := ei +
δ − 1

n
1. (1)

This family of lattices has been defined and studied
in [6]. It is particularly interesting, since it contains
the optimal packing lattices in dimensions 2 and 3 and
the optimal covering lattices in dimensions 2–5. At the
same time, it is simple enough (defined by one parame-
ter only) allowing us to give a complete analysis of the
density of sphere arrangements with limited overlap as
a function of δ. In this paper, we prove that for dimen-
sion 2 and 3, the optimal packing and covering lattices
are robust: even when allowing a certain overlap, either
the optimal sphere packing lattice or the optimal sphere
covering lattice attain the maximum density, depending
on the amount of allowed overlap and how overlap is
measured.

Our paper is organized as follows: In Section 2 we
discuss two different measures of overlaps in sphere ar-
rangements. The first one, called distance-based overlap,
is simply a linear function of the distance between two
sphere centers and has been used for the analysis in [12].
The second one, called volume-based overlap is based on
the intersection volume of spheres. In Section 3 we give
a complete description of the density of sphere arrange-
ments with limited overlap for the distance-based over-
lap. In particular, we show that the FCC lattice results
in the densest arrangement in the considered family of
lattices, regardless of the amount of allowed overlap.
In Section 4 we analyze the more complicated volume-
based overlap measure: We derive an exact formula for
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the packing density for each lattice in the family and
each overlap threshold by analyzing the Voronoi poly-
tope of a lattice point. For planar lattices, we prove that
the hexagonal lattice remains optimal for any overlap.
In dimension 3, we show that the best choice depends
on the allowed overlap and we provide numerical evi-
dence that the optimal lattice is always either the FCC
or the BCC lattice. We end with a short discussion in
Section 5.

2 Measures of Sphere Arrangements

We let Br(p) denote the closed ball of radius r and cen-
ter p. In particular we call the ball centered at the origin
Br = Br(0). Let L denote a lattice; w.l.o.g., we assume
that the origin is a lattice point. We let VL denote the
Voronoi cell of the origin consisting of all points that are
closer to the origin than to any other lattice point. The
Voronoi cells of other lattice points are just translations
of VL and they tessellate Rn.

A first measure of a sphere arrangement is the density.
It is defined as the number of spheres that contain an
average point and can be rephrased as

D(L, r) :=
volBr
volVL

. (2)

We define the union of a sphere arrangement to be

U(L, r) :=
vol (Br ∩ VL)

volVL
. (3)

The U denotes what fraction of the Voronoi cell is
covered by the ball of radius r. Looking at the whole
space, it also denotes what fraction of Rn is covered by
the union of all balls of radius r. This follows because
the Voronoi cells tessellate Rn and from the following
statement:

Proposition 1 Let p be a point that belongs to the
Voronoi cell of c1. If p is covered by a ball Br(c2), then
p is also covered by Br(c1).

A third measure of a sphere arrangement is the over-
lap. We define two measures of overlap. The distance-
based overlap was used to model the spatial organization
of chromosomes in [12] and is defined as the diameter
of the largest sphere that can be inscribed into the in-
tersection of two spheres, i.e.:

Odist(L, r) := max

(
2r −min`∈L\{0}(‖`‖)

2r
, 0

)
. (4)

A less simplified measure of overlap is the volume-based
overlap, which we define as the fraction of a sphere that
expands outside its Voronoi cell:

Ovol(L, r) :=
volBr − vol(Br ∩ volVL)

volVL
. (5)

This value is equivalent to the fraction of all other
spheres expanding into a Voronoi cell (i.e., the overlap
with multiplicity inside a Voronoi cell).

We refer to the unnormalized version of Ovol as the
excess:

E(L, r) := volBr − vol(Br ∩ volVL). (6)

We observe that D(L, ·), U(L, ·) and O(L, ·) (for both
overlap measures) are non-negative, monotonously in-
creasing functions with U(L, ·) upper bounded by 1.
The upper bound for U is reached exactly at the cov-
ering radius, the maximal distance of the origin to the
boundary of V . The lower bound for O is reached ex-
actly at the packing radius, the minimal distance of the
origin to the boundary of V . Also, it holds that

Ovol(L, r) = D(L, r)− U(L, r). (7)

Building upon these measures of sphere arrangements
we can now define a relaxed packing and covering qual-
ity when allowing overlap and uncovered space, respec-
tively. By fixing a threshold ω ∈ R≥0, we define the
relaxed packing quality of a lattice as

Qpack(L, ω) := max
r≥0
{D(L, r) | O(L, r) ≤ ω} .

The goal is to find the lattice that maximizes Qpack.
Note that for ω = 0, this is equivalent to the classi-
cal sphere packing problem: We want to cover as much
space as possible by balls without overlap. It is known
that in dimension 3 the FCC lattice is the optimal so-
lution to this problem.

Lemma 2 The FCC lattice is not optimal w.r.t. Qpack

for some value of ω when measuring overlap by Ovol.

Proof. Let ω be the overlap of the BCC lattice when
choosing the radius to be its covering radius. Note that
the density of this covering is 1+ω by (7). Assume that
the FCC lattice attains the same density for ω. Then,
again by (7), the union must be 1, so the FCC lattice
yields a sphere covering with the same density as the
BCC lattice. But this is a contradiction to the well-
known fact that the FCC covering density is strictly
larger than the BCC covering density. �

Interestingly, we will prove in Section 3 that the FCC
lattice is in fact optimal for all values of ω when measur-
ing overlap by Odist. Similarly, we can define a relaxed
covering quality as

Qcover(L, ω) := min
r≥0
{D(L, r) | 1− U(L, r) ≤ ω} .

In words, we want as little overlap as possible while
allowing only a certain amount of uncovered space. Note
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that for ω = 0, this is equivalent to the classical covering
problem: We want to cover the whole space by balls
minimizing the density. Similarly as in Lemma 2 we
can prove that the BCC lattice is not optimal w.r.t.
Qcover for all values of ω when measuring overlap by
Ovol. However, the BCC lattice is optimal for all values
of ω when measuring overlap by Odist as we will see in
Section 3. For brevity, we concentrate on Qpack; our
analysis easily extended to Qcover with minor changes.

From now on, we focus on lattices Lδ given by a di-
agonal distortion of the integer lattice in Rn as defined
in (1). The parameter δ ∈ (0,∞) defines the amount
of distortion, with δ = 1 denoting no distortion. For
δ from 1 to 0, every point of the integer lattice under-
goes a continuous motion towards its projection onto
the plane with normal vector (1, . . . , 1). For δ ≥ 1, each
lattice point moves continuously in the opposite direc-
tion. For n = 2, the hexagonal lattice corresponds to
δ = 1/

√
3 and δ =

√
3, and for n = 3, the FCC lattice

corresponds to δ = 2 and the BCC lattice to δ = 1/2;
see [6] for more details. We will abuse notation and
identify δ and the lattice Lδ in the definitions of den-
sity, overlap and packing quality: for instance, we write
D(δ, r) instead of D(Lδ, r).

Fixing a threshold ω for the overlap, we would like to
find the best lattice in the family such thatQpack(δ, ω) is
maximized. The approach we take is to compute Qpack

for a given δ in two steps:

1. Compute the largest ball radius r(δ, ω) such that
O(δ, r(δ, ω)) ≤ ω.

2. Compute Qpack(δ, ω) = D(δ, r(δ, ω)).

3 Distance-based overlap

In [12], an algorithm was developed for finding minimum
overlap configurations of N spheres (or more generally
ellipsoids) packed into an ellipsoidal container. In order
to get an efficient algorithm, the simplified distance-
based overlap measure was used, which could be com-
puted as a convex optimization problem. One can easily
check that the problem of finding minimal overlap con-
figurations of spheres with a certain density is equiva-
lent to finding maximal density configurations of spheres
with a certain overlap, the problem we study in this pa-
per. It was observed in a few examples (see Example
3.4 in [12]) that the optimal configuration of the spheres
is invariant to scaling of the radii. This is in fact an
important property for the application to chromosome
packing, since the exact chromatin packing density is
not known and one would hope that the positioning is
robust to different scalings of the chromosomes. In the
following, we prove that this scaling-invariance holds in
infinite space when the sphere centers are restricted to

lie on the 1-parameter distortion family defined in (1).
In this case, the density simplifies to

D(δ, r) =
Vnr

n

δ
, (8)

where Vn denotes the (n-dimensional) volume of the
n-dimensional unit ball. The packing radius of Lδ has
been computed in [6] as:

min
p∈∂V

‖p‖ =


1
2δ
√
n 0 ≤ δ ≤ 1√

n+1
,

1
2

√
1 + δ2−1

n
1√
n+1
≤ δ ≤

√
n+ 1,

1
2

√
2,

√
n+ 1 ≤ δ.

(9)
Using these formulas we prove that the maximum

density configuration is always attained by δ =
√
n+ 1,

regardless of the allowed overlap. This corresponds to
the optimal packing lattice in the family for all n ≥ 2
and over all lattices in dimension 2 and 3. The corre-
sponding statement for the relaxed covering quality can
be found in the appendix.

Theorem 3 The lattice Lδ which maximizes the re-
laxed packing quality w.r.t. Odist is attained by δ =√
n+ 1 independent of the value of ω ∈ [0, 1).

Proof. By plugging the packing radius given in (9) into
the definition of Odist in (4), we can solve for r(δ, ω)1.
Then plugging r(δ, ω) into the formula for the density
given in (2) we get for the δ intervals given in (9):

D(δ, r(δ, ω)) =


n
n
2 Vn

2n(1−ω)n δ
n−1

Vn
2n(1−ω)n δ

−1
(

1 + δ2−1
n

)n
2

Vn
2
n
2 (1−ω)n

δ−1.

(10)

The function D(δ, r(δ, ω)) for n = 3 and ω = 0.5 is
shown in Figure 1 (left). Since ω < 1, the constants
in the function D(δ, r(δ, ω)) in (10) are positive. By
taking derivatives w.r.t. δ we find that for 0 < δ ≤
1/
√
n+ 1 the density is strictly increasing for all values

of ω. Similarly, for the branch 1/
√
n+ 1 ≤ δ ≤

√
n+ 1

the density is strictly decreasing for δ < 1, achieves a
minimum at δ = 1, and is strictly increasing for δ > 1,
independent of the value of ω. Finally, for δ ≥

√
n+ 1

the density is strictly decreasing for all values of ω. As
a consequence, the maxδ>0 D(δ, r(δ, ω)) is obtained in
one of the interval boundaries δ ∈ { 1√

n+1
;
√
n+ 1}.

Evaluating D using the first and last expressions from

(10), we get n
n
2 (n+1)−

n−1
2 ≤ 2

n
2 (n+1)−

1
2 for all n ≥ 2

with equality only for n = 2 where both lattices equal to
the hexagonal lattice. Hence, the maximum is attained
by δ =

√
n+ 1. �

1Note that min`∈L\{0}(‖`‖) = 2 ·minp∈∂V ‖p‖
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Figure 1: Qpack (left) and Qcover (right) as a function
of the distortion parameter δ for n = 3 and ω = 0.5.

4 Volume-based overlap

We next analyze Qpack for the volume-based overlap
measure in dimension 2 and 3. Because of Lemma 2, we
cannot expect the same behavior as for the distance-
based overlap measure from the previous section be-
cause the FCC lattice becomes worse than the BCC
lattice for some value of ω. However, this does not rule
out the possibility of other lattices being optimal. We
perform a deeper investigation of the optimal lattice
configurations, starting with the two-dimensional case.

4.1 Dimension 2

First of all, note that in dimension 2, the lattice for δ
is a scaled version of the lattice for 1

δ . Because of this
symmetry, it suffices to study all lattices with 0 < δ ≤ 1.

Analyzing the volume-based overlap measure requires
the investigation of V := Vδ, the Voronoi cell of the ori-
gin in Lδ, in some detail. V is bounded by six bisectors:

four of them with the lattice points ±e(δ)1 ,±e(δ)2 , and

two with the lattice points ±(e
(δ)
1 + e

(δ)
2 ). We call the

bisectors of type 1 and type 2, respectively. Their dis-
tances to the origin are given by r1 and r2, respectively,
with

r1 :=

√
δ2 + 1

2
√

2
, r2 :=

δ√
2
.

We call rm = min{r1, r2}, and rm = max{r1, r2}.
Note that r1 > r2 if and only if δ <

√
1
3 (Figure 2).

There are six boundary vertices of V and they all have
the same distance to the origin, namely

r3 :=
δ2 + 1

2
√

2
,

which agrees with the covering radius computed in [6]
(see also (13)). As expected, r3 ≥ rm, with equality if
and only if δ = 1.

With this data we can directly derive a formula for
the excess E : If r ≤ rm, Br is completely contained

in V and the E equals 0. If r ≥ r3, Br contains all
boundary vertices of V and thus all of V (of volume δ),
by convexity. In the last case where rm < r < r3, the
part of Br that is not in V is the union of up to six
circular segments. Their area is given by

A =
r2

2
(Θ− sin Θ),

where Θ is the angle at the origin induced by the chord
that bounds the circular segment. This angle can be
expressed as

Θ = 2 arccos

(
d

r

)
,

where d is the smallest distance of the chord to the
origin. In our case, the chord is given by a bisector.
Depending on the type t of the bisector, d is either equal
to r1 or equal to r2. So we define

Θt :=

{
0 r < rt,

2 arccos
(
rt
r

)
r ≥ rt,

Since the circular segments do not intersect for any r <
r3 (because an intersection would imply that a boundary
vertex of V is part of Br) and there are four bisectors
of type 1 and two bisectors of type 2, it follows that for
0 ≤ δ ≤ 1:

E =


0 0 ≤ r ≤ rm,
r2(2Θ1 + Θ2 − 2 sin Θ1 − sin Θ2) rm ≤ r ≤ r3,
πr2 − δ r3 ≤ r .

Recall that the overlap Ovol is simply the normaliza-
tion of the excess; therefore, we obtain its formula after
a division by δ. We can now prove:

Figure 2: The Voronoi cell V for two different values

of δ >
√

1
3 (left) and δ <

√
1
3 (right). On the left,

the bisectors of type 1 are hit first, whereas in the right
bisectors of type 2 are hit first. Note that all lattice
points neighboring the origin lie on a common circle
around the origin.
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Theorem 4 In dimension 2, the lattice Lδ which max-
imizes the relaxed packing quality w.r.t. Ovol is attained
by the hexagonal lattice (i.e. δ ∈ {1/

√
3,
√

3}) indepen-
dent of the value of ω ∈ R≥0.

Proof. Let ω and δ be fixed. Our goal is to com-
pute D(δ, r) where r := r(δ, ω) is chosen maximally such
that Ovol(δ, r) ≤ ω. Observe that the maximal r is cer-
tainly at least the packing radius rm. This results in
the packing density, which is maximized by the hexag-
onal lattice. Moreover, if ω is sufficiently large to allow
a covering, i.e. ω ≥ Ovol(δ, r3), the maximal density is
attained at the best covering. This is known to be the
hexagonal lattice. So we can concentrate on the case
rm ≤ r ≤ r3 where

0 ≤ Ovol(δ, r) ≤ Ovol(δ, r3) =
π(δ2 + 1)2

8δ
− 1, (11)

Consider the function F (δ, ω, r) := ω−Ovol(δ, r), with
Ovol = E/δ, which is defined for (ω, δ, r) in the limits of
interest given in (11). By definition, r = r(δ, ω) satisfies
F (δ, ω, r(δ, ω)) = 0. The density is given by

D(δ, r(δ, ω)) =
π · r(δ, ω)2

δ
,

which we want to maximize w.r.t. δ. This requires com-
puting the derivative of r(δ, ω) w.r.t. δ. We do this by
using the implicit function theorem

∂r

∂δ
(δ, ω) = −

∂F
∂δ (δ, ω, r)
∂F
∂r (δ, ω, r)

.

After some calculations we find

∂ D(δ, r(δ, ω))

∂δ
=



π
√
2r2−δ2

2δ arccos
(

δ
r
√

2

) ;

π(δ2−1)
√
8r2−δ2−1

8δ2
√
δ2+1 arccos

(
δ2+1

8r2

) ;

√
8r2−δ2−1(δ2−1)+2δ

√
2r2−δ2

√
δ2+1

4r
√
δ2+1

(
2 arccos

√
δ2+1

8r2
+arccos

(
δ
r
√

2

)) ;

for r ≤ rm, 0 < δ < 1√
3
; r ≤ rm,

1√
3
< δ < 1; and

rm ≤ r ≤ r3, 0 < δ < 1, respectively.
One can easily check that the first derivative is non-

negative for any δ, except if r equals the packing radius
r2 corresponding to ω = 0, and we know the optimal
packing for this case. Similarly, the second derivative
is non-positive except if r equals the packing radius r1.
The third derivative is zero either if δ = 1√

3
or if r equals

the covering radius r3 corresponding to ω ≥ Ovol(δ, r3),
in which case the hexagonal lattice is optimal as we
argued above. Moreover, for r < r3, the derivative is
increasing for δ < 1√

3
and decreasing for δ > 1√

3
. This

concludes the proof. �
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Figure 3: Relaxed packing quality.

4.2 Dimension 3

In three dimensions, we analyze the 3 dimensional
Voronoi region V and measure the excess E by an
inclusion-exclusion formula for spherical caps: for small
radii, Br ⊆ V and the excess is zero. For increasing
r, Br starts to intersect facets of V , and the excess is
the sum of spherical caps. When r further increases,
Br also intersects edges of V , and the intersection of
two spherical caps must be subtracted from E . Finally,
when Br includes vertices of V (but not all of V ), the
intersection of three spherical caps must be re-added to
E ; we refer to the appendix for further details.

Formulas for the intersection of one, two and three
spherical caps have been described in [5]. In combi-
nation with our analysis, they result in a branchwise-
defined closed expression for Ovol(δ, r). We have com-
puted these expressions using the computer algebra sys-
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tem MAPLE.2 A 3-dimensional plot of the function
Qpack(δ, ω) is shown in Figure 3 (top). In Figure 3 (mid-
dle and bottom) we highlight specific slices through the
3-dimensional plot to better explain the behavior. Fig-
ure 3 (middle) shows Qpack(δ, ω) for three different val-
ues of ω. We can observe that the FCC lattice (δ = 2)
is indeed optimal for small values of allowed overlap
ω. When ω = 0.1, the BCC (δ = 0.5) and the FCC
lattice achieve approximately the same density, namely
D = 1.03. Interestingly, for larger values of ω the BCC
lattice attains the maximal density and surpasses the
FCC lattice. Also observe that both lattices always
achieve a better relaxed packing quality than the in-
teger lattice (δ = 1). Looking at the density of the FCC
and the BCC lattice depending on ω in Figure 3 (bot-
tom), we can note that there is indeed only one switch
of optimality (at ω ≈ 0.1).

Our analysis indicates that the FCC and the BCC
lattice are always locally optimal configurations, and no
other lattice from the family yields a better packing, in-
dependent of the allowed overlap. The natural next step
would be to prove our observation. This problem can in
theory be tackled with the same approach that we used
in Section 4.1 in the 2D case by relating the derivative
of Qpack(δ, ω) to the partial derivatives of Ovol using
the implicit function theorem. For small values of ω, we
were able to verify the claim, that is, prove monotonic-
ity of the function in all branches with a substantial
amount of symbolic computations. However, as soon as
the expression for Ovol involves intersections of 2 and
3 spherical caps, the derivatives seem to become too
complicated to be handled analytically.

5 Discussion

This work has analyzed the problem of densest sphere
packings while allowing some overlap among the
spheres. We see our contributions as a first step to-
wards an interesting and important research direction,
given the numerous applications of spheres with overlap
in the natural sciences. For example, our analysis of the
distance-based overlap measure showing that the FCC
lattice is optimal independent of the amount of overlap,
and hence independent of the scaling of the spheres,
lays the theoretical foundations for [12], i.e., for ana-
lyzing the spatial organization of chromosomes in the
cell nucleus as a sphere arrangement. A major restric-
tion of our approach is our focus on a one-dimensional
sub-lattice, the diagonally distorted lattices. Can we
hope for an analysis of more general lattice families?
This question should probably first be considered in 2D,
given the extremely involved proof of optimality already
for the classical packing problem in 3D.

2http://www.maplesoft.com
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6 Appendix

6.1 Maximizing the Relaxed Covering Quality

We next briefly analyze the relaxed covering quality
and show that in this case the optimum is always at-
tained by the optimal covering configuration. Similarly
as for Odist, we use a linearized measure of the uncov-
ered space 1 − U . We define it as the largest diameter
of a sphere which can be inscribed into the free-space,
i.e.:

F(δ, r) = max

(
maxp∈∂V ‖p‖ − r

r
, 0

)
(12)

The maxp∈∂V ‖p‖ has been computed in [6] for the
1-parameter family of lattices under consideration (it
corresponds to the covering radius):

max
p∈∂V

‖p‖ =


√
n2−1+(n2+2)δ2+(n2−1)δ4√

12n
0 ≤ δ ≤ 1,

√
n2−1+δ2
2
√
n

1 ≤ δ; n odd,√
n2−2+δ2+ 1

δ2

2
√
n

1 ≤ δ; n even.

(13)
Using these formulas we can show that the max-

imum density configuration does not depend on the
amount of allowed free-space and is always attained by
δ = 1/

√
n+ 1, which corresponds to the optimal cover-

ing lattice in the family for all n ≥ 2 and over all lattices
in dimension 2-5.

Theorem 5 The lattice Lδ which minimizes the relaxed
covering quality w.r.t. F is attained by δ = 1/

√
n+ 1

independent of the value of ω ∈ R≥0.

Proof. The proof is analogous to the proof of Theorem
3. The function D(δ, r(δ, ω)) for n = 3 and ω = 0.5 is
shown in Figure 1 (right). �

6.2 Analyzing the 3D Voronoi Cell

In three dimensions, the symmetry between δ and 1
δ is

lost, and we need to analyze both branches.
We first discuss the case 0 < δ ≤ 1: Imagine that r

increases from 0 to ∞. Initially, the excess E is zero.
When increasing the ball radius r, there are three pos-
sibilities w.r.t. the Voronoi cell V := Vδ:

(i) We hit a bisector plane. From now on we have to
add a spherical cap to the volume. There are a total
of 14 bisector planes of three different types. Their
distance to the origin and number of occurrences
are:

r1 :=
√

δ2+2
12 (6 planes),

r2 :=
√

2δ2+1
6 (6 planes),

r3 := δ
√
3

2 (2 planes).

(ii) We hit a boundary edge of V , where two bisec-
tor planes are meeting. From now on, we have to
subtract the volume of the intersection of the two
spherical caps involved (because they are counted
twice). There are a total of 36 trisector edges of
two different types. Their distance to the origin,
number of occurrences, and types of bisector planes
between the 3 involved spheres are:

r4 := δ2+2
3
√
2

(18 edges of type 1-1-2),

r5 :=

√
(δ2+2)(2δ2+1)

2
√
3

(18 edges of type 1-2-3).

However, note that the volume of the cap intersec-
tion depends on the type of the bisector plane be-
tween the two spheres that are not centered at the
origin. We get 5 different subtypes, four of them
appearing 6 times, and one appearing 12 times in
the polytope.

(iii) We hit a boundary vertex of V . All 24
boundary vertices have the same distance
to the origin, namely the covering radius
r6 := 1

6

√
8δ4 + 11δ2 + 8.

When r exceeds r6 the whole Voronoi cell V is cov-
ered, so the excess has volume volBr − δ.

Depending on the value of δ we have the following
ordering of the critical radii:

r3 ≤ r1 ≤ r2 ≤ r5 ≤ r4 ≤ r6 0 ≤ δ ≤ 1/2,

r1 ≤ r3 ≤ r2 ≤ r4 ≤ r5 ≤ r6 1/2 ≤ δ ≤
√

2
5 ,

r1 ≤ r2 ≤ r3 ≤ r4 ≤ r5 ≤ r6
√

2
5 ≤ δ ≤

√
19−
√

(297)

4 ,

r1 ≤ r2 ≤ r4 ≤ r3 ≤ r5 ≤ r6
√

19−
√

(297)

4 ≤ δ ≤ 1.

So Ovol(δ, r) seen as a function in δ has 4 branches. In
every branch, the interval which r falls into determines
how many and which types of cap intersections have
to be taken into account to compute the volume-based
overlap.

For δ > 1, a similar analysis can be performed. How-
ever, there is one remarkable difference: The vertices of
V are no longer arranged in the same distance around
the origin. More precisely, there are 2 vertices at dis-
tance s1 and 6 vertices at distance s2 with

s1 :=
δ2 + 2

2
√

3δ
, s2 :=

√
δ2 + 8

2
√

3
.

Note that s1 < s2 and s2 is the covering radius. So for
δ > 1 and s1 < r < s2 we need to take into account also
triple intersections of spherical caps.


